Skip to main content
Log in

Physico-chemical models of the internal structure of partially differentiated Titan

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

We analyze models of the internal structure of Titan, a large icy satellite of the Saturn system. Calculations are carried out using information on the mass, mean density, moment of inertia, orbital parameters, and elastic properties of the satellite obtained by the Cassini–Huygens mission, as well as geochemical data on the composition of chondrite materials, equations of state of water and ices I, III, V, VI, and VII, and thermodynamic models for conductive heat transfer in the outer icy crust and of global convection in the interior zones of the satellite. The analysis of the models shows that models of partially differentiated Titan are most consistent; they include an outer water–ice shell, an intermediate ice–rock mantle, and an inner rock–iron core. It is shown that for the models of this type the maximum thickness of the water–ice shell is 460–470 km; it can be composed of an outer conductive crust of Ih ice 80–110 km thick and a subsurface water ocean 200–300 km deep. The maximum radius of the central rock–iron core of Titan can reach ~1300 km. The thickness of Titan’s ice–rock mantle does not exceed 2100 km at a density of 1.22–2.64 g/cm3. The model of partially differentiated Titan is feasible in the moment of inertia range of 0.312 < I/MR 2 < ~0.350.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • O. Aharonson, A. G. Hayes, J. I. Lunine, R. D. Lorenz, M. D. Allison, and C. Elachi, “An asymmetric distribution of lakes on Titan as a possible consequence of orbital forcing,” Nature Geosci. 2 (12), 851–854 (2009).

    Article  Google Scholar 

  • J. D. Anderson, E. L. Lau, W. L. Sjogren, G. Schubert, and W. B. Moore, “Gravitational constraints on the internal structure of Ganymede,” Nature 384 (6609), 541–543 (1996).

    Article  Google Scholar 

  • J. D. Anderson, R. A. Jacobson, T. P. McElrath, W. B. Moore, G. Schubert, and P. C. Thomas, “Shape, mean radius, gravity field, and interior structure of Callisto,” Icarus 153 (1), 157–161 (2001).

    Article  Google Scholar 

  • S. K. Atreya, E. Y. Adams, H. B. Niemann, J. E. DemickMontelara, T. C. Owen, M. Fulchignoni, F. Ferri, and E. H. Wilson, “Titan’s methane cycle,” Planet. Space Sci. 54 (12), 1177–1187 (2006).

    Article  Google Scholar 

  • R.-M. Baland, T. van Hoolst, M. Yseboodt, and Karatekin, Ö. “Titan’s obliquity as evidence of a subsurface ocean?” Astron. Astrophys. 530, A141 (2011).

    Article  Google Scholar 

  • R. M. Baland, G. Tobie, A. Lefévre, and T. van Hoolst, “Titan’s internal structure inferred from its gravity field, shape, and rotation state,” Icarus 237, 29–41 (2014).

    Article  Google Scholar 

  • J. W. Barnes, J. Radebaugh, R. H. Brownet, S. Wall, L. Soderblom, J. Lunine, D. Burr, C. Sotin, S. Le Mouélicf, S. B. J. Rodriguez, C. R. Buratti, K. H. Baines, R. Jaumann, P. D. Nicholson, R. L. Kirk, R. Lopes, R. D. Lorenz, K. Mitchell, and C. A. Wood, “Near-infrared spectral mapping of Titan’s mountains and channels,” J. Geophys. Res. 112, E11006 (2007).

    Article  Google Scholar 

  • J. W. Barnes, R. H. Brown, J. M. Soderblom, L. A. Soderblomd, R. Jaumanne, B. Jacksonc, S. Le Mouélicf, C. Soting, B. J. Burattig, K. M. Pitmang, K. H. Bainesg, R. N. Clarkh, P. D. Nicholsoni, E. P. Turtlej, and J. Perryc, “Shoreline features of Titan’s Ontario Lacus from Cassini/VIMS observations,” Icarus 201 (1), 217–225 (2009).

    Article  Google Scholar 

  • J. W. Barnes, J. Bow, J. Schwartz, R. H. Brownc, J. M. Soderblom, A. G. Hayese, G. Vixiea, S. Rodriguezg, S. Le Mouélicf, C. Sotinh, R. Jaumanni, K. Stephani, L. A. Soderblom, R. N. Clark, B. J. Burattih, K. H. Bainesl, and P. D. Nicholsond, “Organic sedimentary deposits in Titan’s dry lakebeds: probable evaporite,” Icarus 216 (1), 136–140 (2011).

    Article  Google Scholar 

  • A. C. Barr and R. M. Canup, “Origin of the Ganymede–Callisto dichotomy by 150 impacts during the late heavy bombardment,” Nat. Geosci. 3, 164–167 (2010).

    Article  Google Scholar 

  • A. C. Barr and W. B. McKinnon, “Convection in ice I shells and mantles with self-consistent grain size,” J. Geophys. Res.: Planets (1991–2012), 112 (E2) (2007).

  • A. C. Barr, R. I. Citron, and R. M. Canup, “Origin of a partially differentiated Titan,” Icarus 209, 858–862 (2010).

    Article  Google Scholar 

  • E. L. Barth and O. B. Toon, “Methane, ethane, and mixed clouds in Titan’s atmosphere: properties derived from microphysical modeling,” Icarus 182, 230–250 (2006).

    Article  Google Scholar 

  • C. Béghin, C. Sotin, and M. Hamelin, “Titan’s native ocean revealed beneath some 45 km of ice by a Schumannlike resonance,” Compt. Rend. Geosci. 342 (6), 425–433 (2010).

    Article  Google Scholar 

  • C. Béghin, O. Randriamboarison, M. Hamelin, E. Karkoschkac, C. Sotind, R. C. Whittene, J.-J. Berthelierb, R. Grardf, and F. Simöesg, “Analytic theory of Titan’s Schumann resonance: Constraints on ionospheric conductivity and buried water ocean,” Icarus 218 (2), 1028–1042 (2012).

    Article  Google Scholar 

  • B. G. Bills and F. Nimmo, “Rotational dynamics and internal structure of Titan,” Icarus 214 (1), 351–355 (2011).

    Article  Google Scholar 

  • R. H. Brown, L. A. Soderblom, J. M. Soderblom, R. N.Clark, R. Jaumann, J. W. Barnes, C. Sotin, B. Buratti, K. H. Baines, and P. D. Nicholson, “The identification of liquid ethane in Titan’s Ontario Lacus,” Nature 454, 607–610 (2008).

    Article  Google Scholar 

  • D. M. Burr, R. E. Jacobsen, D. L. Roth, C. B. Phillips, K. L. Mitchell, and D. Viola, “Fluvial network analysis on Titan: evidence for subsurface structures and west-to-east wind flow, southwestern Xanadu,” Geophys. Res. Lett. 36 (2), L22203 (2009).

    Article  Google Scholar 

  • J. C. Castillo-Rogez and J. I. Lunine, “Evolution of Titan’s rocky core constrained by Cassini observations,” Geophys. Res. Lett. 37, L20205 (2010).

    Google Scholar 

  • M. Choukroun and C. Sotin, “Is Titan’s shape caused by its meteorology and carbon cycle?” Geophys. Res. Lett. 39, L04201 (2012).

    Article  Google Scholar 

  • R. N. Clark, J. M. Curchin, J. W. Barnes, R. Jaumann, L. Soderblom, D. P. Cruikshank, R. H. Brown, S. Rodriguez, J. Lunine, K. Stephan, T. M. Hoefen, S. Le Mouélic, C. Sotin, K. H. Baines, B. J. Buratti, and P. D. Nicholson, “Detection and mapping of hydrocarbon deposits on Titan,” J. Geophys. Res. 115, E10005 (2010).

    Article  Google Scholar 

  • D. Cordier, O. Mousis, J. I. Lunine, P. Lavvas, and V. Vuitton, “An estimate of the chemical composition of Titan’s lakes,” Astrophys. J. Lett. 707 (2), L128 (2009).

    Article  Google Scholar 

  • A. Coustenis and M. Hirtzig, “Cassini–Huygens results on Titan’s surface,” Res. Astron. Astrophys. 9 (3), 249–268 (2009).

    Article  Google Scholar 

  • A. Coustenis, M. Hirtzig, E. Gendron, P. Drossarta, O. Laia, M. Combesa, and A. Negräoa “Maps of Titan’s surface from 1 to 2.5 mm,” Icarus 177, 89–105 (2005).

    Article  Google Scholar 

  • A. Coustenis, R. K. Achterberg, B. J. Conrath, D. E. Jenningsd, A. Martena, D. Gautiera, C. A. Nixone, F. M. Flasard, N. A. Teanby, B. Bézarda, R. E. Samuelsond, R. C. Carlsong, E. Lelloucha, G. L. Bjorakerd, P. N. Romanid, et al., “The composition of Titan’s stratosphere from Cassini/CIRS midinfrared spectra,” Icarus 189, 35–62 (2007).

    Article  Google Scholar 

  • A. N. Dunaeva, D. V. Antsyshkin, and O. L. Kuskov, “Phase diagram of H2O: thermodynamic functions of the phase transitions of high-pressure ices,” Solar Syst. Res. 44 (3), 202–222 (2010).

    Article  Google Scholar 

  • A. N. Dunaeva, V. A. Kronrad, and O. L. Kuskov, “Models of Titan with water–ice shell, rock–ice mantle, and constraints on the rock–iron component composition,” Dokl. Earth Sci. 454 (3), 89–93 (2014).

    Article  Google Scholar 

  • C. Elachi, S. Wall, M. Allison, Y. Anderson, R. Boehmer, P. Callahan, P. Encrenaz, E. Flamini, G. Franceschetti, Y. Gim, G. Hamilton, S. Hensley, M. Janssen, W. Johnson, K. Kelleher, et al., “Cassini radar views the surface of Titan,” Science 308 (5724), 970–974 (2005).

    Article  Google Scholar 

  • F. M. Flasar, R. K. Achterberg, B. J. Conrath, P. J. Gierasch, V. G. Kunde, C. A. Nixon, G. L. Bjoraker, D. E. Jennings, P. N. Romani, A. A. Simon-Miller, B. Bézard, A. Coustenis, P. G. J. Irwin, N. A. Teanby, J. Brasunas, et al., “Titan’s atmospheric temperatures, winds, and composition,” Science 308, 975–978 (2005).

    Article  Google Scholar 

  • A. D. Fortes, “Titan’s internal structure and the evolutionary consequences,” Planet. Space Sci. 60, 10–17 (2012).

    Article  Google Scholar 

  • A. D. Fortes, P. M. Grindrod, S. K. Trickett, and L. Vocadlo, “Ammonium sulfate on Titan: possible origin and role in cryovolcanism,” Icarus 188, 139–153 (2007).

    Article  Google Scholar 

  • M. Fulchignoni, F. Ferri, F. Angrilli, A. J. Ball, A. BarNun, M. A. Barucci, C. Bettanini, G. Bianchini, W. Borucki, G. Colombatti, M. Coradini, A. Coustenis, S. Debei, P. Falkner, and G. Fanti, “In situ measurements of the physical characteristics of Titan’s environment,” Nature 438, 785–791 (2005).

    Article  Google Scholar 

  • P. Gao and D. J. Stevenson, “Nonhydrostatic effects and the determination of icy satellites’ moment of inertia,” Icarus 226 (2), 1185–1191 (2013).

    Article  Google Scholar 

  • C. R. Glein, “Noble gases, nitrogen, and methane from the deep interior to the atmosphere of Titan,” Icarus 250, 570–586 (2015). doi: http://dxdoiorg/10.1016/jicarus.2015.01.001

    Article  Google Scholar 

  • C. R. Glein and E. L. Shock, “A geochemical model of nonideal solutions in the methane–ethane–propane–nitrogen–acetylene system on Titan,” Geochim. Cosmochim. Acta 115, 217–240 (2013).

    Article  Google Scholar 

  • O. Grasset and J. Pargamin, “The ammonia water system at high pressures: implications for the methane of Titan,” Planet. Space Sci. 53 (4), 371–384 (2005).

    Article  Google Scholar 

  • O. Grasset and C. Sotin, “The cooling rate of a liquid shell in Titan’s interior,” Icarus 123, 101–112 (1996).

    Article  Google Scholar 

  • O. Grasset, C. Sotin, and F. Dechamps, “On the internal structure and dynamics of Titan,” Planet. Space Sci. 48 (7–8), 617–636 (2000).

    Article  Google Scholar 

  • C. A. Griffith, T. Owen, T. Geballe, J. Rayner, and P. Rannou, “Evidence for the exposure of water ice on Titan’s surface,” Science 300 (5619), 628–630 (2003).

    Article  Google Scholar 

  • C. A. Griffith, L. Doose, M. G. Tomasko, P. F. Penteado, and C. See, “Radiative transfer analyses of Titan’s tropical atmosphere,” Icarus 218 (2), 975–988 (2012).

    Article  Google Scholar 

  • P. M. Grindrod, A. D. Fortes, F. Nimmo, D. L. Feltham, J. P. Brodholt, and L. Voéadlo, “The long-term stability of a possible aqueous ammonium sulfate ocean inside Titan,” Icarus 197 (1), 137–151 (2008).

    Article  Google Scholar 

  • L. Han and A. P. Showman, “Coupled convection and tidal dissipation in Europa’s ice shell using non-Newtonian grain-size-sensitive (GSS) creep rheology,” Icarus 212 (1), 262–267 (2011).

    Article  Google Scholar 

  • A. Hayes, O. Aharonson, P. Callahan, C. Elachi, Y. Gim, R. Kirk, K. Lewis, R. Lopes, R. Lorenz, J. Lunine, K. Mitchell, G. Mitri, E. Stofan, and S. Wall, “Hydrocarbon lakes on Titan: distribution and interaction with a porous regolith,” Geophys. Res. Lett. 35, L09204 (2008).

    Article  Google Scholar 

  • A. Heintz and E. Bich, “Pure thermodynamics in an icy world: the atmosphere and internal structure of Saturn’s moon Titan,” Appl. Chem. 81(10), 1903–1920 (2009).

    Article  Google Scholar 

  • D. Hemingway, F. Nimmo, H. Zebker, and L. Iess, “A rigid and weathered ice shell on Titan,” Nature 500 (7464), 550–552 (2013).

    Article  Google Scholar 

  • M. Hirtzig, B. Bézard, E. Lellouch, A. Coustenis, C. de Bergh, P. Drossart, A. Campargue, V. Boudon, V. Tyuterev, P. Rannou, T. Cours, S. Kassi, A. Nikitin, D. Mondelain, S. Rodriguez, et al., “Titan’s surface and atmosphere from Cassini/VIMS data with updated methane opacity,” Icarus 226 (1), 470–486 (2013).

    Article  Google Scholar 

  • L. Iess, N. J. Rappaport, R. A. Jacobson, P. Racioppa, D. J. Stevenson, P. Tortora, J. W.Armstrong, and S. W. Asmar, “Gravity field, shape, and moment of inertia of Titan,” Science 327 (5971), 1367–1369 (2010).

    Article  Google Scholar 

  • L. Iess, R. A. Jacobson, M. Ducci, D. J. Stevenson, J. I. Lunine, J. W. Armstrong, S. W. Asmar, P. Racioppa, N. J. Rappaport, and P. Tortora, “The tides of Titan,” Science 337 (6093), 457–459 (2012).

    Article  Google Scholar 

  • H. Imanaka and M. A. Smith, “Formation of nitrogenated organic aerosols in the Titan upper atmosphere,” Proceedings of the National Academy of Sciences 107 (28), 12423–12428 (2010).

    Article  Google Scholar 

  • R. A. Jacobson, P. G. Antreasian, J. J. Bordi, K. E. Criddle, R. Ionasescu, J. B. Jones, R. A. Mackenzie, M. C. Meek, D. Parcher, F. J. Pelletier, W. M. Owen, D. C. Roth, I. M. Roundhill, and J. R. Stauch, “The gravity field of the Saturnian system from satellite observations and spacecraft tracking data,” Astron. J. 132 (6), 2520–2526 (2006).

    Article  Google Scholar 

  • M. A. Janssen, R. D. Lorenz, R. West, F. Paganelli, R.M.Lopes, R. L. Kirk, C. Elachi, S. D. Wall, W. T. K. Johnson, Y. Anderson, R. A. Boehmer, P. Callahan, Y. Gim, G. A. Hamilton, K. D. Kelleher, L. Roth, B. Stiles, A. Le Gall, and the Cassini Radar Team, “Titan’s surface at 2.2-cm wavelength imaged by the Cassini RADAR radiometer: calibration and first results,” Icarus 200 (1), 222–239 (2009).

    Article  Google Scholar 

  • V. A. Krasnopolsky, “A photochemical model of Titan’s atmosphere and ionosphere,” Icarus 201, 226–256 (2008).

    Article  Google Scholar 

  • V. A. Kronrod and O. L. Kuskov, “Chemical differentiation of the Galilean satellites of Jupiter: 1. Structure of the ice–water shell of Callisto,” Geochem. Int. 41 (9), 881–896 (2003).

    Google Scholar 

  • V. A. Kronrod and O. L. Kuskov, “Chemical differentiation of the Galilean satellites of Jupiter: 4. Isochemical models for the compositions of Io, Europa, and Ganymede,” Geochem. Int. 44 (6), 529–546 (2006).

    Article  Google Scholar 

  • V. A. Kronrod and A. B. Makalkin, “Retardation, ablation, and entrapment of planetesimals in the accretionary disk of Jupiter,” Eksp. Geokhim. 1 (1), (2013).

  • O. L. Kuskov and V. A. Kronrod, “Core sizes and internal structure of Earth’s and Jupiter’s satellites,” Icarus 151, 204–227 (2001).

    Article  Google Scholar 

  • O. L. Kuskov and V. A. Kronrod, “Models of the internal structure of Callisto,” Solar Syst. Res. 39 (5), 283–301 (2005a).

    Article  Google Scholar 

  • O. L. Kuskov and V. A. Kronrod, “Internal structure of Europa and Callisto,” Icarus 177, 550–569 (2005b).

    Article  Google Scholar 

  • O. L. Kuskov, V. A. Dorofeeva, V. A. Kronrod and A. B. Makalkin, The systems of Jupiter and Saturn: Formation, Composition and Internal Structure of Large Satellites (LKI, Moscow, 2009) [in Russian].

    Google Scholar 

  • P. Lavvas, R. V. Yelle, T. Koskinen, A. Bazin, V. Vuitton, E. Vigren, M. Galand, A. Wellbrock, A. J. Coates, J.-E. Wahlund, F. J. Crary, and D. Snowden, “Aerosol growth in Titan’s ionosphere,” Proc. Nat. Acad. Sci. 110 (8), 2729–2734 (2013).

    Article  Google Scholar 

  • A. Lefevre, G. Tobie, G. Choblet, and O. Cadek, “Structure and dynamics of Titan’s outer icy shell constrained from Cassini data,” Icarus 237, 16–28 (2014).

    Article  Google Scholar 

  • G. F. Lindal, G. E. Wood, H. B. Hotz, D. N. Sweetnam, V. R. Eshleman, and G. L. Tyler, “The atmosphere of Titan—an analysis of the Voyager 1 radio occultation measurements,” Icarus 53, 348–363 (1983).

    Article  Google Scholar 

  • R. M. C. Lopes, K. L. Mitchell, E. R. Stofan, J. I. Lunine, R. Lorenz, F. Paganelli, R. L. Kirk, C. A. Wood, S. D. Wall, L. E. Robshaw, A. D. Fortes, C. D. Neish, J. Radebaugh, E. Reffet, and S. J. Ostro, “Cryovolcanic features on Titan’s surface as revealed by the Cassini Titan Radar Mapper,” Icarus 186, 395–412 (2007).

    Article  Google Scholar 

  • R. M. C. Lopes, E. R. Stofan, R. Peckyno, J. Radebaugh, K. L. Mitchell, G. Mitri, C. A. Wood, R. L. Kirk, S. D. Wall, J. I. Lunine, A. Hayes, R. D. Lorenz, T. Farr, L. Wye, J. Craig, R. J. Ollerenshaw, M. Janssen, A. LeGall, F. Paganelli, R. West, B. Stiles, P. Callahan, Y. Anderson, P. Valora, L. Soderblom, and the Cassini RADAR Team, “Distribution and interplay of geologic processes on Titan from Cassini radar data,” Icarus 205 (2), 540–558 (2010).

    Article  Google Scholar 

  • R. Lopes, K. L. Mitchell, S. D. G. Wall, J. M. Mitri, S. Ostro, R. L. Kirk, A. G. Hayes, E. R. Stofan, J. I. Lunine, R. D. Lorenz, C. Wood, J. Radebaugh, P. Paillou, H. Zebker, and F. Paganelli, “The lakes and seas of Titan,” EOS, Trans. Am. Geophys. Union 88 (51), 569–570 (2007).

    Article  Google Scholar 

  • R. M. Lopes, C. R. L. Kirk, K. L. Mitchell, A. LeGall, J. W. Barnes, A. Hayes, J. Kargel, L. Wye, J. Radebaugh, E. R. Stofan, M. A. Janssen, C. D. Neish, S. D. Wall, C. A. Wood, J. I. Lunine, and M. J. Malaska, “Cryovolcanism on Titan: New results from Cassini RADAR and VIMS.” J. Geophys. Res. Planets 118, 416–435 (2013).

    Article  Google Scholar 

  • R. D. Lorenz “Thermodynamics of geysers: application to Titan,” Icarus 156 (1), 176–183 (2002).

    Article  Google Scholar 

  • R. D. Lorenz, C. A. Wood, J. I. Lunine, S. D. Wall, R. M. Lopes, K. L. Mitchell, F. Paganelli, Y. Z. Anderson, L. Wye, C. Tsai, H. Zebker, and E. R. Stofan, “Titan’s young surface: Initial impact crater survey by Cassini RADAR and model comparison,” Geophys. Res. Lett. 34, L07204 (2007).

    Article  Google Scholar 

  • R. D. Lorenz, R. M. Lopes, F. Paganelli, J. I. Lunine, R. L. Kirk, K. L. Mitchell, L. A. Soderblom, E. R. Stofan, G. Ori, M. Myers, H. Miyamoto, J. Radebaugh, B. Stiles, S. D. Wall, C. A. Wood, and the Cassini RADAR Team, “Fluvial channels on Titan: Meteorological paradigm and Cassini RADAR observations,” Planet. Space Sci. 56, 1132–1144 (2008).

    Article  Google Scholar 

  • A. Lucas, O. Aharonson, C. Deledalle, A. G. Hayes, R. Kirk, and E. Howington-Kraus, “Insights into Titan’s geology and hydrology based on enhanced image processing of Cassini RADAR data,” J. Geophys. Res. Planets 119, 2149–2166 (2014a).

    Article  Google Scholar 

  • A. Lucas, S. Rodriguez, C. Narteau, B. Charnay, S. C. du Pont, T. Tokano, A. Garcia, M. Thiriet, A. G. Hayes, R. D. Lorenz, and O. Aharonson, “Growth mechanisms and dune orientation on Titan,” Geophys. Res. Lett. 41 (17), 6093–6100 (2014b).

    Article  Google Scholar 

  • J. I. Lunine, “Does Titan have an ocean? A review of current understanding of Titan’s surface,” Rev. Geophys. 31 (2), 133–149 (1993).

    Article  Google Scholar 

  • J. I. Lunine and S. K. Atreya, “The methane cycle on Titan,” Nature Geosci. 1, 159–164 (2008).

    Article  Google Scholar 

  • J. I. Lunine and R. D. Lorenz, “Rivers, lakes, dunes, and rain: crustal processes in Titan’s methane cycle,” Annu. Rev. Earth Planet. Sci. 37, 299–320 (2009).

    Article  Google Scholar 

  • J. I. Lunine and D. J. Stevenson, “Clathrates and ammonia hydrates at high pressure: application to the origin of methane in Titan,” Icarus 70, 61–77 (1987).

    Article  Google Scholar 

  • M. J. Lupo, “Mass–radius relationships in icy satellites after Voyager,” Icarus 52, 40–53 (1982).

    Article  Google Scholar 

  • A. Luspay-Kuti, V. F. Chevrier, D. Cordier, E. G. RiveraValentin, S. Singh, and A. F. C. Wagner, “Wasiak experimental constraints on the composition and dynamics of Titan’s polar lakes,” Earth Planet. Sci. Lett. 410, 75–83 (2015).

    Article  Google Scholar 

  • A. B. Makalkin, and V. A. Dorofeeva, “Accretion disks around Jupiter and Saturn at the stage of regular satellite formation,” Solar Syst. Res. 48 (1), 62–78 (2014).

    Article  Google Scholar 

  • T. B. McCord, G. B. Hansen, B. J. Buratti, R. N. Clark, D. P. Cruikshank, E. D’Aversa, C. A. Griffith, E. K. H. Baines, R. H. Brown, C. M. Dalle Ore, G. Filacchione, V. Formisano, C. A. Hibbitts, R. Jaumann, J. I. Lunine, R. M. Nelson, C. Sotin, and the Cassini VIMS Team, “Composition of Titan’s surface from Cassini VIMS,” Planet. Space Sci. 54, 1524–1539 (2006).

    Article  Google Scholar 

  • T. B. McCord, P. Hayne, J. P. Combe, G. B. Hansen, J. W. Barnes, S. Rodriguez, S. E. Le Mouélic, K. H. Baines, B. J. Buratti, C. Sotin, P. Nicholson, R. Jaumann, R. Nelson, and the Cassini VIMS Team “Titan’s surface: Search for spectral diversity and composition using the Cassini VIMS investigation,” Icarus 194 (1), 212–242 (2008).

    Article  Google Scholar 

  • C. P. McKay, J. B. Pollack, and R. Courtin, “The thermal structure of Titan’s atmosphere,” Icarus 80, 23–53 (1989).

    Article  Google Scholar 

  • W. B. McKinnon, “On convection in ice I shells of outer Solar System bodies, with detailed application to Callisto,” Icarus 183 (2), 435–450 (2006).

    Article  Google Scholar 

  • R. Meier, B. A. Smith, T. C. Owen, and R. J. Terrile, “The surface of Titan from NICMOS observations with the Hubble space telescope,” Icarus 145, 462–473 (2000).

    Article  Google Scholar 

  • J. L. Mitchell, “The drying of Titan’s dunes: Titan’s methane hydrology and its impact on atmospheric circulation,” J. Geophys. Res. 113, E08015 (2008).

    Article  Google Scholar 

  • J. L. Mitchell, R. T. Pierrehumbert, D. M. W. Frierson, and R. Caballero, “The impact of methane thermodynamics on seasonal convection and circulation in a model Titan atmosphere,” Icarus 203, 250–264 (2009).

    Article  Google Scholar 

  • G. Mitri and A. P. Showman, “Thermal convection in iceI shells of Titan and Enceladus,” Icarus 193, 387–396 (2008).

    Article  Google Scholar 

  • G. Mitri, M. T. Bland, A. P. Showman, J. Radebaugh, B. Stiles, R. M. C. Lopes, J. I. Lunine, and R. T. Pappalardo, “Mountains on Titan: modeling and observations,” J. Geophys. Res. 115, E10002 (2010).

    Article  Google Scholar 

  • G. Mitri, A. P. Showman, J. I. Lunine, and R. D. Lorenz, “Hydrocarbon lakes on Titan,” Icarus 186, 385–394 (2007).

    Article  Google Scholar 

  • G. Mitri, A. P. Showman, J. I. Lunine, and R. M. C. Lopes, “Resurfacing of Titan by ammonia-water cryomagma,” Icarus 196, 216–224 (2008).

    Article  Google Scholar 

  • G. Mitri, R. Meriggiola, A. Hayes, A. Lefevre, G. Tobie, A. Genova, J. I. Lunine, and H. Zebker, “Shape, topography, gravity anomalies and tidal deformation of Titan,” Icarus 236, 169–177 (2014).

    Article  Google Scholar 

  • O. Mousis and B. Schmitt, “Sequestration of ethane in the cryovolcanic subsurface of Titan,” Astrophys. J. 677, L67–L70 (2008).

    Article  Google Scholar 

  • A. Negräo, A. Coustenis, E. Lellouch, J.-P. Maillard, P.Rannou, B. Schmitt, C. P. McKay, and V. Boudon, “Titan’s surface albedo variations over a Titan season from near-infrared CFHT/FTS spectra,” Planet. Space Sci. 54 (12), 1225–1246 (2006).

    Article  Google Scholar 

  • R. M. Nelson, L. W. Kamp, D. L. Matson, P. G. J. Irwin, K. H. Baines, M. D. Boryta, F. E. Leader, R. Jaumann, W. D. Smythe, C. Sotin, R. N. Clark, D. P. Cruikshank, P. Drossart, J. C. Pearl, B. W. Hapke, et al., “Saturn’s Titan: surface change, ammonia, and implications for atmospheric and tectonic activity,” Icarus 199, 429–441 (2009).

    Article  Google Scholar 

  • H. B. Niemann, S. K. Atreya, S. J. Baueret, G. R. Carignan, J. E. Demick, R. L. Frost, D. Gautier, J. A. Haberman, D. N. Harpold, D. M. Hunten, G. Israel, J. I. Lunine, W. T. Kasprzak, T. C. Owen, M. Paulkovich, et al., “The abundance of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe,” Nature 438, 779–784 (2005).

    Article  Google Scholar 

  • F. Nimmo and B. G. Bills, “Shell thickness variations and the long wavelength topography of Titan,” Icarus 208, 896–904 (2010).

    Article  Google Scholar 

  • J. G. O’Rourke and D. J. Stevenson, “Stability of ice/rock mixtures with application to a partially differentiated Titan,” Icarus 227, 67–77 (2014).

    Article  Google Scholar 

  • J. Radebaugh, R. Lorenz, R. Kirk, R. L. Kirk, J. I. Lunine, E. R. Stofan, R. M. C. Lopes, S. D. Wall, and the Cassini Radar Team, “Mountains on Titan observed by Cassini RADAR,” Icarus 192, 77–91 (2007).

    Article  Google Scholar 

  • J. Radebaugh, R. D. Lorenz, J. I. Lunine, S. D. Wall, G. Boubin, E. Reffet, R. L. Kirk, R. M. Lopes, E. R. Stofan, L. Soderblom, M. Allison, M. Janssen, P. Paillou, P. Callahan, C. Spencer, and the Cassini Radar Team, “Dunes on Titan observed by Cassini RADAR,” Icarus 194, 690–703 (2008).

    Article  Google Scholar 

  • P. Rannou, F. Montmessin, F. Hourdin, and S. Lebonnois, “The latitudinal distribution of clouds on Titan,” Science 311, 201–205 (2006).

    Article  Google Scholar 

  • S. Rodriguez, S. Le Mouélic, C. Sotin, H. A. Clénet, R. N. Clark, B. Buratti, R. H. Brown, T. B. McCord, P. D. Nicholson, K. H. Baines, and the VIMS Science Team Cassini, “VIMS hyperspectral observations of the HUYGENS landing site on Titan,” Planet. Space Sci. 54, 1510–1523 (2006).

    Article  Google Scholar 

  • H. G. Roe, “Titan’s methane weather,” Annu. Rev. Earth Planet. Sci. 40, 355–382 (2012).

    Article  Google Scholar 

  • J. Ruiz, “The stability against freezing of an internal liquidwater ocean in Callisto,” Nature 412 (6845), 409–411 (2001).

    Article  Google Scholar 

  • T. S. Schneider, D. B. Graves, E. L. Schaller, and M. E. Brown, “Polar methane accumulation and rainstorms on Titan from simulations of the methane cycle,” Nature 481, 58–61 (2012).

    Article  Google Scholar 

  • P. H. Smith, M. T. Lemmon, and R. D. Lorenz, “Titan’s surface revealed by HST imaging,” Icarus 119, 336–349 (1996).

    Article  Google Scholar 

  • F. Sohl, “Revealing Titan’s interior,” Science 327 (5971), 1338–1339 (2010).

    Article  Google Scholar 

  • F. Sohl, W. D. Sears, and R. D. Lorenz, “Tidal dissipation on Titan,” Icarus 115 (2), 278–294 (1995).

    Article  Google Scholar 

  • F. Sohl, H. Hussmann, B. Scwentker, T. Spohn, and R. D. Lorenz, “Interior structure models and tidal Love numbers of Titan,” J. Geophys. Res. Planets (1991–2012) 108 (E12), 5130 (2003).

    Article  Google Scholar 

  • F. Sohl, A. Solomonidou, F. W. Wagner, A. Coustenis, H. Hussmann, and D. Schulze-Makuch, “Structural and tidal models of Titan and inferences on cryovolcanism,” J. Geophys. Res. Planets 119 (5), 1013–1036 (2014).

    Article  Google Scholar 

  • A. Solomonidou, M. Hirtzig, A. Coustenis, E. Bratsolis, S. Le Mouélic, S. Rodriguez, K. Stephan, P. Drossart, C. Sotin, R. Jaumann, R. H. Brown, K. Kyriakopoulos, R. M. C. Lopes, G. Bampasidis, K. Stamatelopoulou-Seymour, et al., “Surface albedo spectral properties of geologically interesting areas on Titan,” J. Geophys. Res. Planets 119 (8), 1729–1747 (2014).

    Article  Google Scholar 

  • K. Stephan, R. Jaumann, R. H. Brown, J. M. Soderblom, L. A. Soderblom, J. W. Barnes, C. Sotin, C. A. Griffith, R. L. Kirk, K. H. Baines, B. J. Buratti, R. N. Clark, D. M. Lytle, R. M. Nelson, and P. D. Nicholson, “Specular reflection on Titan: liquids in Kraken Mare,” Geophys. Res. Lett. 37, L07104 (2010).

    Article  Google Scholar 

  • B. W. Stiles, R. L. Kirk, R. D. Lorenz, S. Hensley, E. Lee, S. J. Ostro, M. D. Allison, P. S. Callahan, Y. Gim, L. Iess, P. P. del Marmo, G. Hamilton, W. T. K. Johnson, R. D. West, and the Cassini RADAR Team, “Determining Titan’s spin state from Cassini RADAR images,” Astron. J. 135 (5), 1669 (2008).

    Article  Google Scholar 

  • E. R. Stofan, C. Elachi, J. I. Lunine, R. D. Lorenz, B. Stiles, K. L. Mitchell, S. Ostro, L. Soderblom, C. Wood, H. Zebker, S. Wall, M. Janssen, R. Kirk, R. Lopes, F. Paganelli, et al., “The lakes of Titan,” Nature 445, 61–64 (2007).

    Article  Google Scholar 

  • S. P. Tan, J. S. Kargel, and G. M. Marion, “Titan’s atmosphere and surface liquid: new calculation using statistical associating fluid theory,” Icarus 222, 53–72 (2013).

    Article  Google Scholar 

  • V. Tchijov, “Heat capacity of high-pressure ice polymorphs,” J. Phys. Chem. Solid. 65 (5), 851–854 (2004).

    Article  Google Scholar 

  • G. Tobie, O. Grasset, J. I. Lunine, A. Mocquet, and C. Sotin, “Titan’s internal structure inferred from a coupled thermal-orbital model,” Icarus 175 (2), 496–502 (2005).

    Article  Google Scholar 

  • G. Tobie, J. I. Lunine, and C. Sotin, “Episodic outgassing as the origin of atmospheric methane on Titan,” Nature 440, 61–64 (2006).

    Article  Google Scholar 

  • G. Tobie, D. Gautier, and F. Hersant, “Titan’s bulk composition constrained by Cassini–Huygens: implication for internal outgassing,” Astrophys. J. 752 (2), 125 (2012).

    Article  Google Scholar 

  • T. Tokano, “Impact of seas/lakes on polar meteorology of Titan: simulation by a coupled GCM-sea model,” Icarus 204 (2), 619–636 (2009a).

    Article  Google Scholar 

  • T. Tokano, “Limnological structure of Titan’s hydrocarbon lakes and its astrobiological implication,” Astrobiology 9 (2), 147–164 (2009b).

    Article  Google Scholar 

  • M. G. Tomasko, B. Archinal, T. Becker, B. Bézard, M. Bushroe, M. Combes, D. Cook, A. Coustenis, C. de Bergh, L. E. Dafoe, L. Doose, S. Douté, A. Eibl, S. Engel, F. Gliem, et al., “Rain, wind and haze during the Huygens probe’s descent to Titan’s surface,” Nature 438, 765–778 (2005).

    Article  Google Scholar 

  • E. P. Turtle, J. E. Perry, A. S. McEwen, A. D. DelGenio, J. Barbara, R. A. West, D. D. Dawson, and C. C. Porco, “Cassini imaging of Titan’s high-latitude lakes, clouds, and south-polar surface changes,” Geophys. Res. Lett. 36, L02204 (2009).

    Article  Google Scholar 

  • W. Wagner and A. Prü, “The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use,” J. Phys. Chem. 31, 387–535 (2002).

    Google Scholar 

  • J. H. Waite, D. T. Young, T. E. Cravenset, A. J. Coates, F. J. Crary, B. Magee, and J. Westlake, “The process of tholin formation in Titan’s upper atmosphere,” Science 316, 870–875 (2007).

    Article  Google Scholar 

  • S. Wall, A. Hayes, C. Bristow, R. Lorenz, E. Stofan, J. Lunine, A. Le Gall, M. Janssen, R. Lopes, L. Wye, L. Soderblom, P. Paillou, O. Aharonson, H. Zebker, T. Farr, G. Mitri, et al., “Active shoreline of Ontario Lacus, Titan: a morphological study of the lake and its surroundings,” Geophys. Res. Lett. 37 (5) (2010).

  • H. Y. Wei, C. T. Russell, M. K. Dougherty, F. M. Neubauer, and Y. J. Ma, “Upper limits on Titan’s magnetic moment and implications for its interior,” J. Geophys. Res. Planets (1991–2012) 115 (E10), (2010).

  • C. A. Wood, K. Mitchell, J. Radebaugh, R. M. Lopes, and E. Stofan, “Lake-filled volcanic calderas of Titan,” Bull. Am. Astron. Soc. 38, 580 (2006).

    Google Scholar 

  • R. V. Yelle, V. Vuitton, P. Lavvas, S. J. Klippenstein, M. A. Smith, S. M. Hörst, and J. Cui, “Formation of NH3 and CH2NH in Titan’s upper atmosphere,” Faraday Discuss. 147, 31–49 (2010).

    Article  Google Scholar 

  • Y. L. Yung, M. Allen, and J. P. Pinto, “Photochemistry of the atmosphere of Titan—Comparison between model and observations,” Astrophys. J. Suppl. 55, 465–506 (1984).

    Article  Google Scholar 

  • J. C. Zarnecki, M. R. Leese, B. Hathi, A. J. Ball, A. Hagermann, M. C. Towner, R. D. Lorenz, J. A. M. McDonnell, S. F. Green, M. R. Patel, T. J. Ringrose, P. D. Rosenberg, K. R. Atkinson, M. D. Paton, M. Banaszkiewicz, B. C. Clark, F. Ferri, M. Fulchignoni, N. A. L. Ghafoor, G. Kargl, H. Svedhem, J. Delderfield, M. Grande, D. J. Parker, P. G. Challenor, and J. E. Geake, “A soft solid surface on Titan as revealed by the Huygens Surface Science Package,” Nature 438 (7069), 792–795 (2005).

    Article  Google Scholar 

  • H. Zebker, A. Hayes, M. Janssen, A. Le Gall, R. Lorenz, and L. Wye, “Surface of Ligeia Mare, Titan, from Cassini altimeter and radiometer analysis,” Geophys. Res. Lett. 41, 308–313 (2014).

    Article  Google Scholar 

  • V. N. Zharkov, V. V. Leontjev, and A. V. Kozenko, “Models, figures, and gravitational moments of the Galilean satellites of Jupiter and icy satellites of Saturn,” Icarus 61 (1), 92–100 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Dunaeva.

Additional information

Original Russian Text © A.N. Dunaeva, V.A. Kronrod, O.L. Kuskov, 2016, published in Geokhimiya, 2016, No. 1, pp. 32–55.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunaeva, A.N., Kronrod, V.A. & Kuskov, O.L. Physico-chemical models of the internal structure of partially differentiated Titan. Geochem. Int. 54, 27–47 (2016). https://doi.org/10.1134/S0016702916010043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916010043

Keywords