Skip to main content
Log in

Species Delimitation and Analysis of Cryptic Species Diversity in the XXI Century

  • Published:
Entomological Review Aims and scope Submit manuscript

Abstract

The potentials and limitations of different approaches to revealing species boundaries and describing cryptic species are discussed. Both the traditional methods of species delimitation, mostly based on morphological analysis, and the approaches using molecular markers are considered. Besides, the prospects of species identification using digital image recognition and machine learning are briefly considered. It is concluded that molecular markers provide very important material for species delimitation; the value of these data increases manifold if they can be compared with information on morphology, geographic distribution, and ecological preferences of the studied taxa. In many cases, only a practicing taxonomist who knows his or her group thoroughly can correctly interpret the molecular data and incorporate them into the existing knowledge system in order to make a taxonomic decision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avise, J.C., Phylogeography: the History and Formation of Species (Harvard University Press, Cambridge-London, 2000).

    Google Scholar 

  2. Avise, J.C., Molecular Markers, Natural History and Evolution (Sinauer Associates, Sunderland, 2004).

    Google Scholar 

  3. Bensasson, D., Zhang, D.X., Hartl, D.L., and Hewitt, G., “Mitochondrial Pseudogenes: Evolution’s Misplaced Witnesses,” Trends in Ecology and Evolution 16 (6), 314–321 (2001). doi: https://doi.org/10.1016/S0169-5347(01)02151-6.

    Article  CAS  Google Scholar 

  4. Brower, A.V.Z., “Problems with DNA Barcodes for Species Delimitation: ‘Ten Species’ of Astraptes fulgerator Reassessed (Lepidoptera: Hesperiidae),” Systematics and Biodiversity 4, 127–132 (2006).

    Article  Google Scholar 

  5. Brower, A.V.Z., “Alleviating the Taxonomic Impediment of DNA Barcoding and Setting a Bad Precedent: Names for Ten Species of ‘Astraptes fulgerator’ (Lepidoptera: Hesperiidae: Eudaminae) with DNA-based Diagnoses,” Systematics and Biodiversity 8 (4), 485–491 (2010).

    Article  Google Scholar 

  6. Camargo, A., Morando, M., Avila, L.J., and Sites, J.W., “Species Delimitation with ABC and Other Coalescent-Based Methods: a Test of Accuracy with Simulations and an Empirical Example with Lizards of the Liolaemus darwinii Complex (Squamata: Liolaemidae),” Evolution 66 (9), 2834–2849 (2012).

    Article  Google Scholar 

  7. Cameron, S., “How to Sequence and Annotate Insect Mitochondrial Genomes for Systematic and Comparative Genomics Research,” Systematic Entomology 39 (3), 400–411 (2014). doi: https://doi.org/10.1111/syen.12071.

    Article  Google Scholar 

  8. Carstens, B.C., Pelletier, T.A., Reid, N., and Satler, J.D., “How to Fail at Species Delimitation,” Molecular Ecology 22, 4369–4383 (2013). doi: https://doi.org/10.1111/mec.12413.

    Article  Google Scholar 

  9. Coyne, J.A. and Orr, H.A., Speciation (Sinauer Associates, Sunderland, 2004).

    Google Scholar 

  10. Cracraft, J., “Speciation and Its Ontology: the Empirical Consequences of Alternative Species Concepts for Understanding Patterns and Processes of Differentiation,” in Speciation and Its Consequences, Ed. by Otte, D. and Endler, J. (Sinauer Associates, Sunderland, 1989), pp. 28–59.

    Google Scholar 

  11. De Queiroz, K., “Species Concepts and Species Delimitation,” Systematic Biology 56 (6), 879–886 (2007). doi: https://doi.org/10.1080/10635150701701083.

    Article  Google Scholar 

  12. Dincă, V., Lukhtanov, V.A., Talavera, G., and Vila, R., “Unexpected Layers of Cryptic Diversity in Wood White Leptidea Butterflies,” Nature Communications 2, 324 (2011). doi: https://doi.org/10.1038/ncomms1329.

    Article  Google Scholar 

  13. Dincä, V., Wiklund, C., Lukhtanov, V.A., Kodandaramaiah, U., Norén, N., Dapporto, L., Wahlberg, N., Vila, R., and Friberg, M., “Reproductive Isolation and Patterns of Genetic Differentiation in a Cryptic Butterfly Species Complex,” Journal of Evolutionary Biology 26 (10), 2095–2106 (2013). doi: https://doi.org/10.1111/jeb.12211.

    Article  Google Scholar 

  14. Galtier, N., Nabholz, B., Glémin, S., and Hurst, G.D.D., “Mitochondrial DNA as a Marker of Molecular Diversity: a Reappraisal,” Molecular Ecology 18 (22), 4541–4550 (2009). doi: https://doi.org/10.1111/j.1365-294X.2009.04380.x.

    Article  CAS  Google Scholar 

  15. Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W., and Hebert, P.D.N., “DNA Barcodes Distinguish Species of Tropical Lepidoptera,” Proceedings of the National Academy of Sciences of the United States of America 103, 968–971 (2006).

    Article  Google Scholar 

  16. Hebert, P.D.N., Cywinska, A., Ball, S.L., and deWaard, J., “Biological Identifications through DNA Barcodes,” Proceedings of the Royal Society B: Biological Sciences 270, 313–321 (2003).

    Article  CAS  Google Scholar 

  17. Hebert, P.D.N. and Gregory, T.R., “The Promise of DNA Barcoding for Taxonomy,” Systematic Biology 54, 852–859 (2005). https://doi.org/10.1080/10635150500354886.

    Article  Google Scholar 

  18. Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H., and Hallwachs, W., “Ten Species in One: DNA Barcoding Reveals Cryptic Species in the Neotropical Skipper Butterfly Astraptes fulgerator,” Proceedings of the National Academy of Sciences of the United States of America 101 (41), 14812–14817 (2004). doi: https://doi.org/10.1073/pnas.0406166101.

    Article  CAS  Google Scholar 

  19. Hernández-Roldán, J.L., Dapporto, L., Dincă, V., Vicente, J.C., Hornett, E.A., Šíchová, J., Lukhtanov, VA., Talavera, G., and Vila, R., “Integrative Analyses Unveil Speciation Linked to Host Plant Shift in Spialia Butterflies,” Molecular Ecology 25 (17), 4267–4284 (2016). doi: https://doi.org/10.1111/mec.13756.

    Article  Google Scholar 

  20. Isaac, N.J.B., Mallet, J., and Mace, G.M., “Taxonomic Inflation: Its Influence on Macroecology and Conservation,” Trends in Ecology and Evolution 19, 464–469 (2004).

    Article  Google Scholar 

  21. Larsen, B.B., Miller, E.C., Rhodes, M.K., and Wiens, J., “Inordinate Fondness Multiplied and Redistributed: The Number of Species on Earth and the New Pie of Life,” Quarterly Review of Biology 92 (3), 229–265 (2017). https://doi.org/10.1086/693564.

    Article  Google Scholar 

  22. Leache, A.D., Fujita, M.K., Minin, V.N., and Bouckaert, R.R., “Species Delimitation Using Genome-Wide SNP Data,” Systematic Biology 63 (4), 534–542 (2014). doi: https://doi.org/10.1093/sysbio/syu018.

    Article  Google Scholar 

  23. Linnaeus, C., Systema Naturae. Tomus I. Editio Decima, Reformata (Laurentii Salvii, Holmiae, 1758).

    Google Scholar 

  24. Lorković, Z., “Leptidea reali Reissinger, 1989 (= lorkovicii Real, 1988), a New European Species (Lepid., Pieridae),” Natura Croatica 2, 1–26 (1993).

    Google Scholar 

  25. Lukhtanov, V.A., “Principles of Phylogenetic Reconstruction: Characters, Evolutionary Models, and Methods of Phylogenetic Analysis,” in Modern Problems of Biological Systematics (Proceedings of the Zoological Institute of the Russian Academy of Sciences, Supplement 2), Ed. by Alimov, A.F. and Stepaniants, S.D. (Zoological Institute, St. Petersburg, 2013), pp. 39–52 [in Russian].

    Google Scholar 

  26. Lukhtanov, V.A. and Dantchenko, A.V., “A New Butterfly Species from South Russia Revealed through Chromosomal and Molecular Analysis of the Polyommatus (Agrodiaetus) damonides Complex (Lepidoptera, Lycaenidae),” Comparative Cytogenetics 11 (4), 769–795 (2017). https://doi.org/10.3897/CompCytogen.v11i4.20072.

    Article  Google Scholar 

  27. Lukhtanov, V.A. and Kuznetsova, V.G., “Molecular Genetic and Cytogenetic Approaches to Species Diagnostics, Taxonomy, and Phylogenetics,” Zhurnal Obshchei Biologii 70 (5), 415–437 (2009).

    CAS  PubMed  Google Scholar 

  28. Lukhtanov, V.A. and Shapoval, N.A., “Sympatric Cryptic Species of Butterflies in the Agrodiaetus kendevani Complex (Lepidoptera, Lycaenidae) Revealed by Population Analysis of Unlinked Genetic Markers,” Doklady Akademii Nauk 423 (3), 421–426 (2008).

    Google Scholar 

  29. Lukhtanov, V.A. and Shapoval, N.A., “Chromosomal Identification of Cryptic Species Sharing Their DNA Barcodes: Polyommatus (Agrodiaetus) antidolus and P. (A.) morgani in Iran (Lepidoptera, Lycaenidae),” Comparative Cytogenetics 11 (4), 759–768 (2017). doi: https://doi.org/10.3897/compcytogen.v11i4.20876.

    Article  Google Scholar 

  30. Lukhtanov, V.A., Kandul, N.P., Plotkin, J.B., Dantchenko, A.V., Haig, D., and Pierce, N.E., “Reinforcement of Prezygotic Isolation and Karyotype Evolution in Agrodiaetus Butterflies,” Nature 436, 385–389 (2005).

    Article  CAS  Google Scholar 

  31. Lukhtanov, V.A., Vila, R., and Kandul, N.P., “Rearrangement of the Agrodiaetus dolus Species Group (Lepidoptera, Lycaenidae) Using a New Cytological Approach and Molecular Data,” Insect Systematics and Evolution 37 (3), 325–334 (2006).

    Article  Google Scholar 

  32. Lukhtanov, V.A., Shapoval, N.A., and Dantchenko, A.V, “Agrodiaetus shahkuhensis sp. n. (Lepidoptera, Lycaenidae), a Cryptic Species from Iran Discovered by Using Molecular and Chromosomal Markers,” Comparative Cytogenetics 2 (2), 99–114 (2008).

    Google Scholar 

  33. Lukhtanov, V.A., Sourakov, A., Zakharov, E.V., and Hebert, P.D.N., “DNA Barcoding Central Asian Butterflies: Increasing Geographical Dimension does not Significantly Reduce the Success of Species Identification,” Molecular Ecology Resources 9, 1302–1310 (2009). doi: https://doi.org/10.1111/j.1755-0998.2009.02577.x.

    Article  Google Scholar 

  34. Lukhtanov, V.A., Shapoval, N.A., and Dantchenko, A.V., “Taxonomic Position of Several Enigmatic Polyommatus (Agrodiaetus) Species (Lepidoptera, Lycaenidae) from Central and Eastern Iran: Insights from Molecular and Chromosomal Data,” Comparative Cytogenetics 8 (4), 313–322 (2014). doi: https://doi.org/10.3897/CompCytogen.v8i4.8939.

    Article  Google Scholar 

  35. Lukhtanov, V.A., Dantchenko, A.V., Vishnevskaya, M.S., and Saifitdinova, A.F., “Detecting Cryptic Species in Sympatry and Allopatry: Analysis of Hidden Diversity in Polyommatus (Agrodiaetus) butterflies (Lepidoptera: Lycaenidae),” Biological Journal of the Linnean Society 116 (2), 468–485 (2015a). doi: https://doi.org/10.1111/bij.12596.

    Article  Google Scholar 

  36. Lukhtanov, V.A., Shapoval, N.A., Anokhin, B.A., Saifitdinova, A.F., and Kuznetsova, V.G., “Homoploid Hybrid Speciation and Genome Evolution via Chromosome Sorting,” Proceedings of the Royal Society B: Biological Sciences 282 (1807): 20150157 (2015b). doi: https://doi.org/10.1098/rspb.2015.0157.

    Article  Google Scholar 

  37. Lukhtanov, V.A., Sourakov, A., and Zakharov, E.V., “DNA Barcodes as a Tool in Biodiversity Research: Testing Pre-Existing Taxonomic Hypotheses in Delphic Apollo Butterflies (Lepidoptera, Papilionidae),” Systematics and Biodiversity 14 (6), 599–613 (2016). doi: https://doi.org/10.1080/14772000.2016.1203371.

    Article  Google Scholar 

  38. Lukhtanov, V.A., Dincă, V., Friberg, M., Šichová, J., Olofsson, M., Vila, R., Marec, F., and Wiklund, C., “Versatility of Multivalent Orientation, Inverted Meiosis, and Rescued Fitness in Holocentric Chromosomal Hybrids,” Proceedings of the National Academy of Sciences of the United States of America 115 (41), E9610–E9619 (2018). https://doi.org/10.1073/pnas.1802610115.

    Article  CAS  Google Scholar 

  39. Mallet, J.A., “Species Definition for the Modern Synthesis,” Trends in Ecology and Evolution 10, 294–299 (1995).

    Article  CAS  Google Scholar 

  40. Mallet, J. and Willmott, K., “Taxonomy: Renaissance or Tower of Babel?” Trends in Ecology and Evolution 18, 57–59 (2003).

    Article  Google Scholar 

  41. Mayr, E., Animal Species and Evolution (Harvard University Press, Cambridge, MA, 1963; Mir, Moscow, 1968) [in Russian].

    Book  Google Scholar 

  42. Mayr, E., Principles of Systematic Zoology (McGraw-Hill, New York, 1969; Mir, Moscow, 1971) [in Russian].

    Google Scholar 

  43. Nichols, R., “Gene Trees and Species Trees are Not the Same,” Trends in Ecology and Evolution 16, 358–364 (2001).

    Article  CAS  Google Scholar 

  44. O’Connella, K.A. and Smith, E.N., “The Effect of Missing Data on Coalescent Species Delimitation and a Taxonomic Revision of Whipsnakes (Colubridae: Masticophis),” Molecular Phylogenetics and Evolution 127, 356–366 (2018). https://doi.org/10.1016/j.ympev.2018.03.018.

    Article  Google Scholar 

  45. O’Meara, B.C., “New Heuristic Methods for Joint Species Delimitation and Species Tree Inference,” Systematic Biology 59, 59–73 (2010).

    Article  Google Scholar 

  46. Pazhenkova, E.A. and Lukhtanov, V.A., “Nuclear Genes (but not Mitochondrial DNA Barcodes) Reveal Real Species: Evidence from the Brenthis Fritillary Butterflies (Lepidoptera, Nymphalidae),” Journal of Zoological Systematics and Evolutionary Research 57 (2), 298–313 (2019). doi: https://doi.org/10.1111/jzs.12252.

    Article  Google Scholar 

  47. Pons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., Kamoun, S., Sumlin, W.D., and Vogler, A.P., “Sequence-Based Species Delimitation for the DNA Taxonomy of Undescribed Insects,” Systematic Biology 55 (4), 595–609 (2006). doi: https://doi.org/10.1080/10635150600852011.

    Article  Google Scholar 

  48. Ratnasingham, S. and Hebert, P.D.N., “A DNA-Based Registry for All Animal Species: The Barcode Index Number (BIN) System,” PLoS ONE 8 (8): e66213 (2013). doi: https://doi.org/10.1371/journal.pone.0066213.

    Article  CAS  Google Scholar 

  49. Ritter, S., Michalski, S.G., Settele, J., Wiemers, M., Fric, Z.F., Sielezniew, M., Šašić, M., Rozier, Y., and Durka, W., “Wolbachia Infections Mimic Cryptic Speciation in Two Parasitic Butterfly Species, Phengaris teleius and P. nausithous (Lepidoptera: Lycaenidae),” PLoS ONE 8 (11): e78107 (2013). https://doi.org/10.1371/journal.pone.0078107.

    Article  CAS  Google Scholar 

  50. Rosser, N., Kozak, K.M., Phillimore, A.B., and Mallet, J., “Extensive Range Overlap between Heliconiine Sister Species: Evidence for Sympatric Speciation in Butterflies?” BMC Evolutionary Biology 15, 125 (2015). doi: https://doi.org/10.1186/s12862-015-0420-32015.

    Article  Google Scholar 

  51. Shapoval, N.A. and Lukhtanov, V.A., “Intragenomic Variations of Multicopy ITS2 Marker in Agrodiaetus Blue Butterflies (Lepidoptera, Lycaenidae),” Comparative Cytogenetics 9 (4), 483–497 (2015). doi: https://doi.org/10.3897/CompCytogen.v9i4.5429.

    Article  Google Scholar 

  52. Stork, N.E., McBroom, J., Gely, C., and Hamilton, A.J., “New Approaches Narrow Global Species Estimates for Beetles, Insects, and Terrestrial Arthropods,” Proceedings of the National Academy of Sciences of the United States of America 112, 7519–7523 (2015).

    Article  CAS  Google Scholar 

  53. Talavera, G., Lukhtanov, V.A., Rieppel, L., Pierce, N.E., and Vila, R., “In the Shadow of Phylogenetic Uncertainty: the Recent Diversification of Lysandra Butterflies through Chromosomal Change,” Molecular Phylogenetics and Evolution 69, 469–478 (2013). https://doi.org/10.1016/j.ympev.2013.08.004.

    Article  Google Scholar 

  54. Todisco, V., Grill, A., Fiedler, K., Gottsberger, B., Dincă, V., Vodă, R., Lukhtanov, V., and Letsch, H., “Molecular Phylogeny of the Palaearctic Butterfly Genus Pseudophilotes (Lepidoptera: Lycaenidae) with Focus on the Sardinian Endemic P. Barbagiae,” BMC Zoology 3, 4 (2018). https://doi.org/10.1186/s40850-018-0032-7.

    Article  Google Scholar 

  55. Toews, D. and Brelsford, A., “The Biogeography of Mitochondrial and Nuclear Discordance in Animals,” Molecular Ecology 21 (16), 3907–3930 (2012). doi: https://doi.org/10.1111/j.1365-294X.2012.05664.x.

    Article  CAS  Google Scholar 

  56. Vershinina, A.O. and Lukhtanov, V.A., “Geographical Distribution of the Cryptic Species Agrodiaetus alcestis alcestis, A. alcestis karacetinae and A. demavendi (Lepidoptera, Lycaenidae) Revealed by Cytogenetic Analysis,” Comparative Cytogenetics 4 (1), 1–11 (2010).

    Article  Google Scholar 

  57. Vila, R., Lukhtanov, V.A., Talavera, G., Gil-T. F., and Pierce, N.E., “How Common are Dot-Like Distribution Ranges? Taxonomical Oversplitting in Western European Agrodiaetus (Lepidoptera, Lycaenidae) Revealed by Chromosomal and Molecular Markers,” Biological Journal of Linnean Society 101, 130–154 (2010).

    Article  Google Scholar 

  58. Vishnevskaya, M.S., Saifitdinova, A.F., and Lukhtanov, V.A., “Karyosystematics and Molecular Taxonomy of the Anomalous Blue Butterflies (Lepidoptera, Lycaenidae) from the Balkan Peninsula,” Comparative Cytogenetics 10 (5), 1–85 (2016). doi: https://doi.org/10.3897/CompCytogen.v10i5.10944.

    Article  Google Scholar 

  59. Vrtilek, M. and Reichard, M., “Patterns of Morphological Variation among Populations of the Widespread Annual Killifish Nothobranchius orthonotus are Independent of Genetic Divergence and Biogeography,” Journal of Zoological Systematics and Evolutionary Research 54 (4), 289–298 (2016). doi: https://doi.org/10.1111/jzs.12134.

    Article  Google Scholar 

  60. Wäldchen, J. and Mäder, P., “Machine Learning for Image Based Species Identification,” Methods in Ecology and Evolution 9, 2216–2225 (2018). doi: https://doi.org/10.1111/2041-210X.13075.

    Article  Google Scholar 

  61. Wiemers, M. and Fiedler, K., “Does the DNA Barcoding Gap Exist? — A Case Study in Blue Butterflies (Lepidoptera: Lycaenidae),” Frontiers in Zoology 4, 8 (2007). doi: https://doi.org/10.1186/1742-9994-4-8.

    Article  Google Scholar 

  62. Yang, Z. and Rannala, B., “Bayesian Species Delimitation Using Multilocus Sequence Data,” Proceedings of the National Academy of Sciences of the United States of America 107, 9264–9269 (2010).

    Article  CAS  Google Scholar 

  63. Zhang, Z.-Q. (Ed.), “Animal Biodiversity: an Outline of Higher-Level Classification and Survey of Taxonomic Richness (Addenda 2013),” Zootaxa 3703, 1–82 (2013).

Download references

Acknowledgments

I am grateful to A.O. Vershinina (University of California, Santa Cruz, California, U.S.A.), M.S. Vishnevskaya and E.A. Pazhenkova (St. Petersburg State University), A.V. Dantchenko (Moscow State University), and N.A. Shapoval (Zoological Institute, Russian Academy of Sciences) for help with research and discussion of the manuscript.

Funding

This work was carried out within the framework of the State research project AAAA-A19-119020790106-0 (sections Species Delimitation in the Pre-Molecular Epoch and Species Delimitation in the Molecular Epoch) and financially supported by the Russian Foundation for Basic Research (project 18-04-00263a: sections Delimitation Methods Based on Distances and Delimitation Methods Based on Phylogenetic Analysis of Molecular Characters; project 17-04-00828: sections Delimitation Methods Based on Models and Methods Based on Validation of Provisional Species Hypotheses; project 17-04-00754: section Taxonomic Intuition and the Potentials of Artificial Intelligence) and the Russian Science Foundation (project 19-14-00202: sections The Species Concepts and Analysis of Cryptic Species Diversity).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Lukhtanov.

Additional information

Russian Text © The Author(s), 2019, published in Entomologicheskoe Obozrenie, 2019, Vol. 98, No. 2, pp. 358–370.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukhtanov, V.A. Species Delimitation and Analysis of Cryptic Species Diversity in the XXI Century. Entmol. Rev. 99, 463–472 (2019). https://doi.org/10.1134/S0013873819040055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0013873819040055

Navigation