Skip to main content
Log in

Endogenous Brassinosteroids Are Involved in the Formation of Salt Resistance in Plants

  • Published:
Doklady Biological Sciences Aims and scope Submit manuscript

Abstract

The endogenous brassinosteroid (BS) profile was for the first time shown to change in response to salt stress in potato plants. A group of 6-keto-BSs was identified and found to significantly increase in content during salinization in contrast to other groups of hormones examined. A tenfold reduction in the level of endogenous BSs in mutant Arabidopsis thaliana plants with impaired biosynthesis (det2) (or reception (bri1)) of phytosteroids decreased their salt resistance, as evidenced by a lower efficiency of photochemical processes of photosystem II (PSII) and growth inhibition. The results confirmed the idea that endogenous BSs are involved in the formation of salt resistance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Manghwar, H., Hussain, A., Ali, Q., and Liu, F., Brassinosteroids (BRs) role in plant development and coping with different stresses, Int. J. Mol. Sci., 2022, vol. 23, p. 1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Machado, R.M.A. and Serralheiro, R.P., Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization, Horticulturae, 2016, vol. 3, no. 2, p. 30.

    Article  Google Scholar 

  3. Giordano, M., Petropoulos, S.A., and Rouphael, Y., Response and defence mechanisms of vegetable crops against drought, heat and salinity stress, Agriculture, 2021, vol. 11, p. 463.

    Article  CAS  Google Scholar 

  4. Nxele, X., Klein, A., and Ndimba, B.K., Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants, S. Afr. J. Bot., 2017, vol. 108, pp. 261–266.

    Article  CAS  Google Scholar 

  5. Pan, T., Liu, M., Kreslavski, V.D., Zharmukhame-dov, S.K., Nie, C., Yu, M., Kuznetsov, V.V., Allakhverdiev, S.I., and Shabala, S., Non-stomatal limitation of photosynthesis by soil salinity, Crit. Rev. Environ. Sci. Technol., 2021, vol. 51, pp. 791–825.

    Article  CAS  Google Scholar 

  6. Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., and Hayat, S., Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance, Plant Physiol. Biochem., 2020, vol. 156, pp. 64–77.

    Article  CAS  PubMed  Google Scholar 

  7. Ahammed, G.J., Li, X., Liu, A., and Chen, S., Brassinosteroids in plant tolerance to abiotic stress, J. Plant Growth Regul., 2020, vol. 39, pp. 1451–1464.

    Article  CAS  Google Scholar 

  8. Lichtenthaler, H.K., Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes, Methods Enzymol., 1987, vol. 148, pp. 350–382.

    Article  CAS  Google Scholar 

  9. Pradko, A.G., Litvinovskaya, R.P., Sauchuk, A.L., Drach, S.V., Baranovsky, A.V., Zhabinskii, V.N., Mirantsova, T.V., and Khripach, V.A., A new ELISA for quantification of brassinosteroids in plants, Steroids, 2015, vol. 97, pp. 78–86.

    Article  CAS  PubMed  Google Scholar 

  10. Efimova, M.V., Savchuk, A.L., Khasan, Dzh.A.K., Litvinovskaya, R.P., Khripach, V.A., Kholodova, V.P., and Kuznetsov, V.V., Physiological mechanisms of enhancing salt tolerance of oilseed rape plants with brassinosteroids, Russ. J. Plant Physiol., 2014, vol. 61, no. 6, pp. 733–743.

    Article  CAS  Google Scholar 

  11. Ding, J., Wu, J.H., Liu, J.F., Yuan, B.F., and Feng, Y.Q., Improved methodology for assaying brassinosteroids in plant tissues using magnetic hydrophilic material for both extraction and derivatization, Plant Methods, 2014, vol. 10, no. 1, pp. 39–49.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kravets, V.S., Kretinin, S.V., Derevyanchuk, M.V., Drach, S.V., Litvinovskaya, R.P., and Khripa, V.A., The influence of low temperatures on the level of endogenous brassinosteroids, Dopov. Nats. Akad. Nauk Ukr., 2011, vol. 8, pp. 155–114.

  13. Litvinovskaya, R.P., Savchuk, A.L., Manzhelesova, N.E., Polyanskaya, S.N., and Khripach, V.A., Immunoenzyme test systems for evaluating the steroid hormone status of plants under biotic stress, Russ. Chem. Bull., 2014, vol. 9, pp. 2184–2188.

    Article  Google Scholar 

  14. Kolomeichuk, L.V., Efimova, M.V., Zlobin, I.E., Kreslavski, V.D., Murgan, O.K., Kovtun, I.S., Khripach, V.A., Kuznetsov, V.V., and Allakhverdiev, S.I., 24-Epibrassinolide alleviates the toxic effects of NaCl on photosynthetic processes in potato plants, Photosynth. Res., 2020, vol. 146, p. 151.

    Article  CAS  PubMed  Google Scholar 

  15. Chaudhuri, A., Halder, K., Abdin, M.Z., Majee, M., and Datta, A., Abiotic stress tolerance in plants: brassinosteroids navigate competently, Int. J. Mol. Sci., 2022, vol. 23, p. 14577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yuan, L., Shu, S., Sun, J., Guo, S., and Tezuka, T., Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress, Photosynth. Res., 2012, vol. 112, no. 3, pp. 205–214.

    Article  CAS  PubMed  Google Scholar 

  17. Hayat, S., Khalique, G., Wani, A.S., Alyemeni, M.N., and Ahmad, A., Protection of growth in response to 28-homobrassinolide under the stress of cadmium and salinity in wheat, Int. J. Biol. Macromol., 2014, vol. 64, pp. 130–136.

    Article  CAS  PubMed  Google Scholar 

  18. Fujioka, S., Li, J., Choi, Y.-H., Seto, H., Takatsuto, S., Noguchi, T., Watanabe, T., Kuriyama, H., Yokota, T., Chory, J., and Sakurai, A., The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis, Plant Cell, 1997, vol. 9, pp. 1951–1962.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zeng, H., Tang, Q., and Hua, X., Arabidopsis brassinosteroid mutants det2-1 and bin2-1 display altered salt tolerance, J. Plant Growth Regul., 2010, vol. 29, no. 1, pp. 44–52.

    Article  Google Scholar 

  20. Kim, S.Y., Kim, B.H., Lim, C.J., Lim, C.O., and Nam, K.H., Constitutive activation of stress-inducible genes in a brassinosteroid-insensitive 1 (bri1) mutant results in higher tolerance to cold, Physiol. Plant., 2010, vol. 138, no. 2, pp. 191–204.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Evaluation of the BS effect on the plant salt resistance was supported by the Tomsk State University development program (Priority-2030, project no. 2.1.2.22). Plant morphometric analysis was supported by the Russian Science Foundation (project no. 23-44-10019). Endogenous BS assays were supported by the Belarussian Republican Foundation for Basic Research (project no. Kh23RNF-087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Danilova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of humans or animals. This work does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolomeichuk, L.V., Danilova, E.D., Murgan, O.K. et al. Endogenous Brassinosteroids Are Involved in the Formation of Salt Resistance in Plants. Dokl Biol Sci 511, 259–263 (2023). https://doi.org/10.1134/S0012496623700485

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012496623700485

Keywords:

Navigation