Skip to main content
Log in

Air explosion characteristics of a novel TiH2/RDX composite explosive

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

An explosive mixture of cyclotrimethylenetrinitramine (RDX) and titanium hydride (TiH2) is introduced. To investigate the explosion characteristics of the composite explosive, charges with various contents of the TiH2 powder are prepared and tested in air explosion experiments. Results show that the peak overpressure, positive duration, and positive specific impulse increase as the content of TiH2 increases from 10 to 20%, as compared to passivated RDX. The peak overpressure, duration, and specific impulse have the largest increase of 6, 9, and 23%, respectively, as compared to passivated RDX, when the TiH2 content is 20%. The effect of the TiH2 particle size is also considered. The charge containing the TiH2 powder with a mean particle size of 4.6 μm shows higher values of the three parameters than that containing 45-μm TiH2 particles under the condition of the same content of TiH2. However, the relationship between the detonation velocity and TiH2 content is a linear inverse proportion, and the particle size of TiH2 has a minor effect on it. Solid explosion products of the TiH2/RDX composite explosive are analyzed by x-ray photoelectron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDX). TiO2 is found in explosion products, which is believed to form due to TiH2 oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Gordon, K. C. Gross, and G. P. Perram, “Fireball and shock wave dynamics in the detonation of aluminized novel munitions,” Fiz. Goreniya Vzryva 49 (4), 76–90 (2013)

    Google Scholar 

  2. J. M. Gordon, K. C. Gross, and G. P. Perram, Combust., Expl., ShockWave 49 (4), 450–462 (2013).

    Article  Google Scholar 

  3. Ya. F. Cheng, H. H. Ma, and Zh. W. Shen “Detonation Characteristics of Emulsion Explosives Sensitized by MgH2,” Fiz. Goreniya Vzryva 49 (5) 120–125 (2013)

    Google Scholar 

  4. Ya. F. Cheng, H. H. Ma, and Zh. W. Shen, Combust., Expl., Shock Waves 49 (5), 614–619 (2013).

    Article  Google Scholar 

  5. H. Liu, P. He, J. C. Feng, et al., “Kinetic Study on Nonisothermal Dehydrogenation of TiH2 Powders,” Int. J. Hydrogen Energy 34 (7), 3018–3025 (2009).

    Article  Google Scholar 

  6. S. C. Shark, T. R. Sippel, S. F. Son, et al., “Theoretical Performance Analysis of Metal Hydride Fuel Additives for Rocket Propellant Applications,” in 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2011.

    Google Scholar 

  7. C. F. Li, “Research of Raise Solid Propellant Burning Rate by using Titanium Hydride,” Winged Missiles J. 6, 34–37 (1997).

    Google Scholar 

  8. L. W. Collins, “The Stability and Compatibility of TiHx/KClO4 Pyrotechnics,” J. Hazard. Mater. 5 (4), 325–333 (1982).

    Article  Google Scholar 

  9. L. W. Collins “Thermal Ignition of Titanium Based Pyrotechnics,” Combust. Flame 41, 325–330 (1981).

    Article  Google Scholar 

  10. D. Sorensen, A. Quebral, E. Baroody, et al., “Investigation of the Thermal Degradation of the Aged Pyrotechnic Titanium Hydride/Potassium Perchlorate,” J. Therm. Anal. Calorimetry 85 (1), 151–156 (2006).

    Article  Google Scholar 

  11. G. Bjarnholt, “Suggestions on Standards for Measurement and Data Evaluation in the Underwater Explosion Test,” Propel., Explos., Pyrotech. 5 (2-3), 67–74 (1980).

    Article  Google Scholar 

  12. W. X. Liu, D. Z. Zhang, F. P. Zhang, and Y. Li, “Blast Loading Difference between Spherical Charge and Cylindrical Charge with Length Equal to Diameter at Small Scaled Distances,” Explos. ShockWaves 33 (3), 330–336 (2013).

    Google Scholar 

  13. M. M. Ismail and S. G. Murray, “Study of the Blast Wave Parameters from Small Scale Explosions,” Propel., Explos., Pyrotech. 18 (1), 11–17 (1993).

    Article  Google Scholar 

  14. G. F. Kinney and K. J. Graham, Explosive Shocks in Air (Springer-Verlag, Berlin–New York, 1985).

    Book  Google Scholar 

  15. J. F. Baytos, T. R. Gibbs, A. Popolato, LASL Explosive Property Data (Univ. of California Press, 1980).

    Google Scholar 

  16. E. G. Maksimov and O. A. Pankratov, “Hydrogen in Metals,” Usp. Fiz. Nauk 116 (7), 385–412 (1975).

    Article  ADS  Google Scholar 

  17. C. Wagner and G. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, 1979).

    Google Scholar 

  18. G. Stepura, V. Rosenband, and A. Gany, “A Model for the Decomposition of Titanium Hydride and Magnesium Hydride,” J. Alloys Compounds 513, 159–164 (2012).

    Article  Google Scholar 

  19. I. E. Gabis, A. P. Voit, E. A. Evard, et al., “Kinetics of Hydrogen Desorption from the Powders of Metal Hydrides,” J. Alloys Compounds 404, 312–316 (2005).

    Article  Google Scholar 

  20. Y. F. Huang and X. F. Wang, “Reaction Mechanism of Metallized Explosive with Composite Metals Powder,” Chin. J. Explos. Propel. 27 (4), 26–28 (2004).

    Google Scholar 

  21. V. Bhosle, E. G. Baburaj, M. Miranova, et al., “Dehydrogenation of Nanocrystalline TiH2 and Consequent Consolidation to Form Dense Ti,” Metallurg. Mater. Trans. A 34 (12), 2793–2799 (2003).

    Article  Google Scholar 

  22. K. G. Prashanth, “Influence of Mechanical Activation on Decomposition of Titanium Hydride,” Mater. Manufactur. Process. 25 (9), 974–977 (2010).

    Article  Google Scholar 

  23. L. P. Orlenko. Physics of Explosion, (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  24. Y. F. Cheng, H. H. Ma, and Z. W. Shen, “Detonation Characteristics of Emulsion Explosives Sensitized by MgH2,” Chin. J. High Pressure Phys. 27 (1), 45–50 (2013).

    Google Scholar 

  25. W. Baker, Explosion in Air (Texas, 1973).

    Google Scholar 

  26. S. Samal, S. Cho, D. W. Park, et al., “Thermal Characterization of Titanium Hydride in Thermal Oxidation Process,” Thermochim. Acta 542, 46–51 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-H. Ma.

Additional information

Original Russian Text © B. Xue, H.-H. Ma, Z.-W. Shen.

Published in Fizika Goreniya i Vzryva, Vol. 51, No. 4, pp. 101–108, July–August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, B., Ma, HH. & Shen, ZW. Air explosion characteristics of a novel TiH2/RDX composite explosive. Combust Explos Shock Waves 51, 488–494 (2015). https://doi.org/10.1134/S0010508215040140

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508215040140

Keywords

Navigation