Skip to main content
Log in

Evaluation of Thyroid Hormones-Thyrotropin Interrelationships in Thyroid Dysfunction States from Population-Based Data Analysis with a Logistic Model

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Objective of this research is to explore the complex correlations among FT3, FT4 and TSH in thyroid dysfunction states. A total of 3425 outpatients were included to analyze their thyroid function tests measured at the university teaching hospital. The subjects under study were categorized as euthyroid (70.45%), subclinical hypothyroid (18.95%), overt hypothyroid (3.30%), subclinical hyperthyroid (5.11%) and overt hyperthyroid (2.19%) patients. The linear and non-linear relations among FT3, FT4 and TSH were modeled statistically to understand their role in thyroid functions. The prevalence of hypothyroidism is higher than hyperthyroidism in which females are more vulnerable than males. The correlation between FT3 and FT4 increases from euthyroidism (r = 0.1, P < 0.001) to overt thyroid dysfunctions (r = 0.91, P < 0.001). The non-linear complex correlations between FT4 and TSH are significantly explained by well fitted sigmoid curves of four-parameter logistic (4PL) model (R2 = 0.97 and P < 0.001) in both hypothyroidism and hyperthyroidism interfaced with euthyroidism. The 4PL curves are response trajectories of pituitary TSH which exhibit the turning points of thyroid dysfunction states by the deviation in serum FT4. The negative slopes and correlations observed in the linear fits in TSH vs FT3 or FT4 are the indicators of negative feedback mechanism in the thyroid cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. R. Hoermann, J. E. Midgley, A. Giacobino, et al., Clin. Endocrinol. 81, 907 (2014).

    Article  Google Scholar 

  2. N. C. Hadlow, K. M. Rothacker, R. Wardrop, et al., J. Clin. Endocrinol. Metab. 98, 2936 (2013).

    Article  Google Scholar 

  3. G. Kozdag, D. Ural, A. Vural, et al., Eur. J. Heart Fail. 7, 113 (2005).

    Article  Google Scholar 

  4. B. Biondi, and D. S. Cooper, Endocr. Rev. 29, 76 (2007).

    Article  Google Scholar 

  5. T. R. Lamichhane, S. P. Pant, B. Lamichhane, et al., J. Biosci. Med. 6, 59 (2018).

    Google Scholar 

  6. E. N. Pearce, A. P. Farwell, and L. E. Braverman, N. Engl. J. Med. 348, 2646 (2003).

    Article  Google Scholar 

  7. C. T. Sawin, D. Chopra, F. Azizi, et al., J. Am. Med. Assoc. 242, 247 (1979).

    Article  Google Scholar 

  8. P. R. Larsen, J. E. Silva, and M. M. Kaplan, Endocr. Rev. 2, 87 (1981).

    Article  Google Scholar 

  9. N. Benhadi, E. Fliers, T. J. Visser, et al., Eur. J. Endocrinol. 162, 323 (2010).

    Article  Google Scholar 

  10. R. Hoermann, W. Eckl, C. Hoermann, et al., Eur. J. Endocrinol. 162, 1123 (2010).

    Article  Google Scholar 

  11. M. K. S. Leow, J. Theor. Biol. 248, 275 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  12. P. M. Clark, R. L. Holder, S. M. Haque, et al., J. Clin. Pathol. 65, 463 (2012).

    Article  Google Scholar 

  13. S. Reichlin, and R. D. Utiger, J. Clin. Endocrinol. Metab. 27, 251 (1967).

    Article  Google Scholar 

  14. J. E. Midgley, R. Hoermann, R. Larisch, et al., J. Clinl. Pathol. 66, 335 (2013).

    Article  Google Scholar 

  15. E. Bortolotto, R. Rousseau, B. Teodorescu, et al., Bioprocess Int. 13, 26 (2015).

    Google Scholar 

  16. M. Azadeh, B. Gorovits, J. Kamerud, et al., AAPS J. 20, 22 (2018).

    Article  Google Scholar 

  17. N. Manji, J. D. Carr-Smith, K. Boelaert, et al., J. Clin. Endocrinol. Metab. 91, 4873 (2006).

    Article  Google Scholar 

  18. J. V. Fade, J. A. Franklyn, K. W. Cross, et al., Clin. Endocrinol. 34, 77 (1991).

    Article  Google Scholar 

  19. Y. Aoki, R. M. Belin, R. Clickner, et al., Thyroid 17, 1211 (2007).

    Article  Google Scholar 

  20. G. J. Canaris, N. R. Manowitz, G. Mayor, et al., Arch. Intern. Med. 160, 526 (2000).

    Article  Google Scholar 

  21. L. M. Prisant, J. S. Gujral, and A. L. Mulloy, J. Clin. Hypertens. 8, 596 (2006).

    Article  Google Scholar 

  22. S. Mariotti, C. Franceschi, A. Cossarizza, et al., Endocr. Rev. 16, 686 (1995).

    Article  Google Scholar 

  23. M. P. J. Van Boxtel, P. P. C. A. Menheere, O. Bekers, et al., Psychoneuroendocrinology 29, 891 (2004).

    Article  Google Scholar 

  24. S. Rabbiosi, M. C. Vigone, F. Cortinovis, et al., J. Clin. Endocrinol. Metab. 98, 1395 (2013).

    Article  Google Scholar 

  25. V. Bacci, G. C. Schussler, and T. B. Kaplan, J. Clin. Endocrinol. Metab. 54, 1229 (1982).

    Article  Google Scholar 

  26. A. Engum, T. Bjøro, A. Mykletun, et al., Acta Psychiatr. Scand. 106, 27 (2002).

    Article  Google Scholar 

  27. R. Bunevicius, and A. J. Prange, Jr., Curr. Opin. Psychiatr. 23, 363 (2010).

    Article  Google Scholar 

  28. J. Jonklaas, N. Kahric-Janicic, O. P. Soldin, at al., Clin. Chem. 55, 1380 (2009).

    Article  Google Scholar 

  29. M. K. S. Leow, Front. Endocrinol. 7, 64 (2016).

    Article  Google Scholar 

  30. J. Berberich, J. W. Dietrich, R. Hoermann, at al., Front. Endocrinol. 9, 91 (2018).

    Article  Google Scholar 

Download references

Funding

This work was partially supported by Nepal Academy of Science and Technology (NAST) through a grant of PhD fellowship to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Lamichhane.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of compliance with standards of research involving humans as subjects. This research work has been performed under the ethical guidelines provided by and taking authority from Institutional Review Board (IRB), Institute of Medicine (IOM), Tribhuvan University Teaching Hospital (TUTH), Maharajgunj, Kathmandu, Nepal.

DATA AVAILABILITY

The data used to support the findings of this study are available from the corresponding author upon request.

Additional information

Abbreviations: FT3, serum free triiodothyronine; FT4, serum free teraiodothyronine; TSH, thyroid stimulating hormone or thyrotropin; TFT, thyroid function test; 4PL, four parameter logistic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamichhane, T.R., Pant, S.P., Lamichhane, B. et al. Evaluation of Thyroid Hormones-Thyrotropin Interrelationships in Thyroid Dysfunction States from Population-Based Data Analysis with a Logistic Model. BIOPHYSICS 67, 281–287 (2022). https://doi.org/10.1134/S0006350922020130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922020130

Keywords:

Navigation