Skip to main content
Log in

Pools of Amino Acids of Skeletal Muscle in Yakutian Ground Squirrel Urocitellus undulatus during Different Hibernation Stages

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Muscular atrophy is not observed in hibernating animals during hibernation. The mechanisms of this phenomenon are unknown, however their fine regulation should be reflected in the status of free amino acids of skeletal muscles. In this study, the composition of free amino acids in skeletal muscles of the Yakut ground squirrel in winter hibernation at 0°C was explored. There was an increase in the content of alanine during hibernation that returned to the summer level during short-term awakening. Aspartic acid was found in the skeletal muscles of ground squirrels at the beginning of torpor, and it disappeared upon short-term awakening. The pools of glycine and taurine did not change at the beginning or the end of torpor. Pools of essential amino acids increased at the end of torpor, and with a short-term awakening they return to the initial level. The interrelated increase and decrease in the content of free amino acids indicated the absence of predominance of catabolism processes over anabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. A. M. Belous and V. A. Bondarenko, Structural Changes in Bioloical Membranes under Cooling (Naukova Dumka, Kiev, 1982) [in Russian].

    Google Scholar 

  2. N. D. Ozernyuk and S. K. Nechaev, Biol. Bull. 29, 373 (2002).

    Article  Google Scholar 

  3. A. S. Efremova and V. P. Zinchenko, Biochemistry (Moscow), Suppl. Ser. A: Membr. Cell Biol. 2, 372 (2008).

    Google Scholar 

  4. A. E. Alekseev, A. F. Korystova, D. A. Mavlyutova, and Y. M. Kokoz, Biochem. Mol. Biol. Int. 33, 365 (1994).

    Google Scholar 

  5. N. A. Azzam, J. M. Hallenbeck, and B. Kachar, Nature 407, 317 (2000).

    Article  ADS  Google Scholar 

  6. F. Geiser, Annu. Rev. Physiol. 66, 239 (2004).

    Article  ADS  Google Scholar 

  7. L. C. H. Wang and T. F. Lee, in Handbook of Physiology (Oxford Univ. Press, New York, 1996), Vol. 4, pp. 507–531.

    Google Scholar 

  8. N. M. Zakharova, Biol. Sci. 6, 1401 (2014).

    Google Scholar 

  9. G. R. Izrailova, R. A. Khalilov, and A. A. Adieva. Biol. Sci. Fund. Res. 11, 1046 (2014).

    Google Scholar 

  10. F. van Breukelen and S. L. Martin, J. Appl. Physiol. 92, 2640 (2002).

    Article  Google Scholar 

  11. K. L. Drew, M. B. Harris, J. C. LaManna, et al., J. Exp. Biol. 207, 3155 (2004). https://doi.org/10.1242/jeb.01114

    Article  Google Scholar 

  12. Z. El. Hachimi, M. Tijane, G. Boissonnet, et al., Comp. Biochem. Physiol., Part B: Comp. Biochem. 96, 457 (1990). https://doi.org/10.1016/0305-0491(90)90039-v

    Article  Google Scholar 

  13. J. M. Steffen, D. A. Koebel, X. J. Musacchia, et al., Comp. Biochem. Physiol., Part B: Biochem. Syst. Environ. Physiol. 99, 815 (1991).

    Article  Google Scholar 

  14. S. J. Wickler, D. F. Hoyt, and F. Van Breukelen, Am. J. Physiol.: Regul. Integr. Comp. Physiol. 261, R1214 (1991).

    Google Scholar 

  15. C. J. Cotton and H. J. Harlow, Physiol. Biochem. Zool. 83, 551 (2010). https://doi.org/10.1086/650471

    Article  Google Scholar 

  16. D. B. Tinker, H. J. Harlow, and T. D. Beck, Physiol. Zool. 71, 414 (1998).

    Article  Google Scholar 

  17. R. J. Isfort, R. T. Hinkle, M. B. Jones, et al., Electrophoresis 21, 2228 (2000).

    Article  Google Scholar 

  18. Y. Seo, K. Lee, K. Park, et al., J. Biochem. 139, 71 (2006).

    Article  Google Scholar 

  19. S. Broer and A. Broer, Biochem. J. 474, 1935 (2017). https://doi.org/10.1042/BCJ20160822

    Article  Google Scholar 

  20. A. Sarah, A. M. Rice, G. ten Have, and J. A. Reisz, Nat. Metab. 2, 1459 (2020). https://doi.org/10.1038/s42255-020-00312-4

    Article  Google Scholar 

  21. D. H. Spachman, W. H. Stein, and S. Moore, Anal. Chem. 30, 1190 (1958).

    Article  Google Scholar 

  22. M. V. Karanova, J. Evol. Biochem. Physiol. 45, 67 (2009).

    Article  Google Scholar 

  23. R. S. James, J. F. Staples, and J. C. L. Brown, J. Exp. Biol. 216, 2587, (2013). https://doi.org/10.1242/jeb.080663

    Article  Google Scholar 

  24. O. L. Pisarenko, A. V. Baranov, E. V. Pomerantsev, et al., Int. J. Cardiol. 23, 43 (1989).

    Article  Google Scholar 

  25. E. A. Ivakine and R. D. Cohn, Exp. Physiol. 99, 632 (2014).

    Article  Google Scholar 

  26. K. Lee, H. So, T. Gwag, et al., J. Cell. Physiol. 222, 313 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their sincere gratitude to A.V. Petrov and V.V. Merkulov for their help in performing chromatographic analysis of amino acids, and to A.S. Averin and S.S. Popova for the isolation of biomaterial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Karanova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of the welfare of animals. The capture and maintenance of animals delivered to the laboratory was carried out in accordance with the rules adopted by the II European Convention for the Protection of Animals Used for Experiments or for Other Scientific Purposes (1986).

Additional information

Translated by E. Puchkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karanova, M.V., Zakharova, N.M. Pools of Amino Acids of Skeletal Muscle in Yakutian Ground Squirrel Urocitellus undulatus during Different Hibernation Stages. BIOPHYSICS 67, 288–293 (2022). https://doi.org/10.1134/S0006350922020105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922020105

Keywords:

Navigation