Skip to main content
Log in

The Role of Hsp70 Genes in Promoting Control of Viability in Drosophila melanogaster Subjected to Microwave Irradiation

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Biological effects produced by low-energy electromagnetic radiation were often explained by transcriptional induction of the Hsp70 gene. In this study, we investigated a series of important adaptation traits developed in Drosophila melanogaster strains with different copy numbers of Hsp70 genes when subjected to microwave irradiation. In our experiments, we used mutant strains with gene deletion in all or several Hsp70 copies. The wild-type strain (Canton-S containing the full set of Hsp70 genes in its genome) was used as a control. Electromagnetic radiation (power density10 μW/cm2, frequency 37.7 GHz and 65.0 GHz, exposure duration 5 min) was used for the irradiation of adult flies (imago). The experimental results showed that exposure to microwave radiation produced no effect on the number of the wild-type offspring (Canton-S with the full set of Hsp70 genes) by the pupal stage and imago but was accompanied by increased embryonic mortality and an increased median lifespan. In most cases, exposure to microwave radiation led to adverse effects on the viability of strains without all copies or with the presence of one copy of Hsp70 genes. In these strains, the external influence resulted in a lower number of offspring by the imago, an increased number of dead individuals during the pupal and early stages of imago development, and a decrease in the median and maximum lifespan of the imago. Interestingly, when the strain containing four copies of Hsp70 was exposed to microwave radiation it was found that individuals tend to show sexual dimorphism in response to such an external influence: a decrease in the median and maximum lifespan of the female imago and an increase of the lifespan of the male flies. The results of this study demonstrate the importance of the presence of the full set of Hsp70 genes in the Drosophila genome to adapt to microwave radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. Goodman, M. Blank, H. Lin, et al., Bioelectrochem. Bioenerg. 33 (2), 115 (1994). https://doi.org/10.1016/0302-4598(95)05040-X

    Article  Google Scholar 

  2. H. Lin, M. Opler, M. Head, et al., J. Cell. Biochem. 66 (4), 482, (1997). https://doi.org/10.1002/(sici)1097-4644(19970915)66:4<482::aid-jcb7>3.0.co;2-h

    Article  Google Scholar 

  3. L. Han, H. Lin, M. Head, et al., J. Cell. Biochem. 71 (4), 577 (1998). https://doi.org/10.1002/(sici)1097-4644(19981215)71:4<577::aid-jcb12>3.0.co;2-v

    Article  Google Scholar 

  4. H. Lin, L. Han, M. Blank, et al., J. Cell. Biochem. 70 (3), 297 (1998). https://doi.org/10.1002/(SICI)1097-4644(19980901)70:3<297::AID-JCB2>3.0.CO;2-I

    Article  Google Scholar 

  5. H. Lin, M. Blank, and R. Goodman, J. Cell. Biochem. 75 (1), 170 (1999). https://doi.org/10.1002/(SICI)1097-4644(19991001)75:1<170::AID-JCB17>3.0.CO;2-5

    Article  Google Scholar 

  6. M. Blank and R. Goodman, Pathophysiology 16 (2–3), 71 (2009). https://doi.org/10.1016/j.pathophys.2009.01.006

  7. A. O. Rodriguez de la Fuente, J. M. Alcocer-Gonzalez, A. J. Heredia-Rojas, et al., Cell Biol. Int. 33 (3), 419 (2009). https://doi.org/10.1016/j.cellbi.2008.09.014

    Article  Google Scholar 

  8. A. Garip and Z. Akan, Acta Biol. Hung. 61 (2), 158 (2010). https://doi.org/10.1556/ABiol.61.2010.2.4

    Article  Google Scholar 

  9. A. C. Mannerling, M. Simko, K. H. Mild, and M. O. Mattsson, Radiat. Environ. Biophys. 49 (4), 731 (2010). https://doi.org/10.1007/s00411-010-0306-0

    Article  Google Scholar 

  10. R. Alfieri, M. Bonelli, G. Pedrazzi, et al., Radiat. Res. 165 (1), 95 (2006). https://doi.org/10.1667/rr3487.1

    Article  ADS  Google Scholar 

  11. C. Bernardini, A. Zannoni, M. E. Turba, et al., Bioelectromagnetics 28 (3), 231 (2007). https://doi.org/10.1002/bem.20299

    Article  Google Scholar 

  12. R. Goodman, D. Weisbrot, A. Uluc, and A. Henderson, Bioelectromagnetics 13 (2), 111 (1992). https://doi.org/10.1002/bem.2250130205

    Article  Google Scholar 

  13. D. Weisbrot, H. Lin, L. Ye, et al., J. Cell. Biochem. 89 (1), 48 (2003). https://doi.org/10.1002/jcb.10480

    Article  Google Scholar 

  14. W. J. Gong and K. G. Golic, Genetics 168 (3), 1467 (2004). https://doi.org/10.1534/genetics.104.030874

    Article  Google Scholar 

  15. W. J. Gong and K. G. Golic, Genetics 172 (1), 275 (2006). https://doi.org/10.1534/genetics.105.048793

    Article  Google Scholar 

  16. B. R. Bettencourt, C. C. Hogan, M. Nimali, and B. W. Drohan, BMC Biol. 6 (1), 5 (2008). https://doi.org/10.1186/1741-7007-6-5

    Article  Google Scholar 

  17. V. Shilova, O. G. Zatsepina, D. G. Garbuz, et al., Insect Mol. Biol. 27 (1), 61 (2018). https://doi.org/10.1111/imb.12339

    Article  Google Scholar 

  18. M. E. Feder and R. A. Krebs, Am. Zool. 38, 503 (1998). https://doi.org/10.1093/icb/38.3.503

    Article  Google Scholar 

  19. . P. Serednii, V. I. Ogar, T. M. Golyakova, et al., Ukr. Metrol. Zh., No. 4, 50 (2009).

  20. D. L. Hill, Drosophila Inform. Service 19, 62 (1945).

    Google Scholar 

  21. L. D. Brown, T. T. Cai, and A. DasGupta, Stat. Sci. 16 (2), 101 (2001).

    Article  Google Scholar 

  22. S. K. Han, D. Lee, H. Lee, et al., Oncotarget 7, 56147 (2016). https://doi.org/10.18632/oncotarget.11269

    Article  Google Scholar 

  23. O. V. Gorenskaya, D. V. Rybak, N. V. Rybak, et al., Visn. Kharkiv. Nats. Univ. im. V. N. Karazina, Ser. Bi-ol. 32, 52 (2020). https://doi.org/10.26565/2075-5457-2020-34-6

    Article  Google Scholar 

  24. T. L. Poy, E. C. Beyer, and C. F. Reichelderfer, J. Microwave Power 7 (2), 75 (1972). https://doi.org/10.1080/00222739.1972.11688836

    Article  Google Scholar 

  25. E. Atli and H. Unlu, Turk. J. Biol. 31 (1), 1 (2007). https://doi.org/10.1080/09553000600798849

    Article  Google Scholar 

  26. L. H. Margaritis, A. K. Manta, K. D. Kokkaliaris, et al., Electromagn. Biol. Med. 33 (3), 165 (2014). https://doi.org/10.3109/15368378.2013.800102

    Article  Google Scholar 

  27. N. E. Sagioglou, A. K. Manta, I. K. Giannarakis, et al., Electromagn. Biol. Med. 35 (1), 40 (2016). https://doi.org/10.3109/15368378.2014.971959

    Article  Google Scholar 

  28. R. I. Morimoto, Cold Spring Harb. Symp. 76, 91 (2011). https://doi.org/10.1101/sqb.2012.76.010637

    Article  Google Scholar 

  29. M. Tatar, A. A. Khazaeli, and J. W. Curtsinger, Nature 390 (6655), 30 (1997). https://doi.org/10.1038/36237

    Article  ADS  Google Scholar 

  30. M. B. Evgen’ev, D. G. Garbuz, and O. G. Zatsepina, in Heat Shock Proteins and Whole Body Adaptation to Extreme Environments (Springer, Dordrecht, 2014), pp. 59–115. https://doi.org/10.1007/978-94-017-9235-6

    Book  Google Scholar 

  31. M. R. Meiselman, T. G. Kingan, and M. E. Adams, BMC Biol. 16, 18 (2018). https://doi.org/10.1186/s12915-018-0484-9

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of Ukraine (project no. 0119U002549, O. Gorenskaya) and the Russian Science Foundation (project no. 17-74-30030, M. Evgen’ev).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Evgen’ev.

Ethics declarations

The authors declare that they have no conflicts of interest. This work does not contain a description of research using humans and animals as objects.

Additional information

Translated by M. Batrukova

Abbreviations: EMR, electromagnetic radiation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorenskaya, O.V., Gavrilov, A.B., Zatsepina, O.G. et al. The Role of Hsp70 Genes in Promoting Control of Viability in Drosophila melanogaster Subjected to Microwave Irradiation. BIOPHYSICS 66, 541–549 (2021). https://doi.org/10.1134/S0006350921040059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921040059

Keywords:

Navigation