Skip to main content
Log in

On the role of titin phosphorylation in the development of muscular atrophy

  • Letters to the Editor
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

On the basis of our earlier experiments on the study of changes in the content of titin and the level of its phosphorylation in skeletal muscles that atrophied during space flight, hibernation, and because of the development of alcohol-induced lesions, it was hypothesized that an increase in the degree of titin phosphorylation results in increased proteolytic degradation of this protein, which contributes to the development of skeletal muscle atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ulanova, Y. Gritsyna, I. Vikhlyantsev, et al., Biomed. Res. Int. 2015, 104735 (201). doi 10.1155/2015/104735

  2. N. N. Salmov, I. M. Vikhlyantsev, A. D. Ulanova, et al., Biochemistry (Moscow) 80, 343 (2015).

    Article  Google Scholar 

  3. Yu. V. Gritsyna, N. N. Salmov, I. M. Vikhlyantsev, et al., Mol. Biol. (Moscow) 47, 871 (2013).

    Article  Google Scholar 

  4. N. N. Salmov, Yu. V. Gritsyna, A. D. Ulanova, et al., in Receptors and Intracellular Signaling, Ed. by V. P. Zinchenko and A.V. Berezhnov (Pushchino, 2015), Vol. 1, p. 296.

    Google Scholar 

  5. I. M. Vikhlyantsev, Z. A. Podlubnaya, Biochemistry (Mosc), 2012 Dec; 77(13):1515–35. doi: 10.1134/ S0006297912130093.

    Article  Google Scholar 

  6. W. A. Linke and N. Hamdani, Circ. Res. 114, 1052 (2014).

    Article  Google Scholar 

  7. A. D. Liversage, D. Holmes, P. J. Knight, et al., J. Mol. Biol. 305, 401 (2001).

    Article  Google Scholar 

  8. R. Horowits, E. S. Kempner, M. E. Bisher, and R. J. Podolsky, Nature 323, 160 (1986).

    Article  ADS  Google Scholar 

  9. O. Cazorla, G. Vassort, D. Garnier, and J. Y. Le Guennec, J. Mol. Cell. Cardiol. 31, 1215 (1999).

    Article  Google Scholar 

  10. L. L. Somerville and K. Wang, Arch. Biochem. Biophys. 262, 118 (1988).

    Article  Google Scholar 

  11. C. C. Gregorio, H. Granzier, H. Sorimachi, and S. Labeit, Curr. Opin. Cell Biol. 11, 18 (1999).

    Article  Google Scholar 

  12. M. Gautel, K. Leonard, and S. Labeit, EMBO J. 12, 3827 (1993).

    Google Scholar 

  13. M. G. Sebestyen, J. A. Wolff, and M. L. Greaser, J. Cell Sci. 108 (9), 3029 (1995).

    Google Scholar 

  14. M. Gautel, D. Goulding, B. Bullard, et al., J. Cell Sci., 109 (11), 2747 (1996).

    Google Scholar 

  15. R. Yamasaki, Y. Wu, M. McNabb, et al., Circ Res. 90, 1181 (2002).

    Article  Google Scholar 

  16. N. Fukuda, Y. Wu, P. Nair, and H. L. Granzier, J. Gen. Physiol. 125, 257 (2005).

    Article  Google Scholar 

  17. M. C. Leake, A. Grutzner, M. Kruger, and W. A. Linke, J. Struct. Biol. 155, 263 (2006).

    Article  Google Scholar 

  18. M. Kruger and W. A. Linke, J. Muscle Res. Cell Motil. 27, 435 (2006).

    Article  Google Scholar 

  19. S. Kotter, L. Gout, M. von Frieling-Salewsky, et al., Cardiovasc Res. 99, 648 (2013).

    Article  Google Scholar 

  20. M. Kruger, S. Kotter, A. Grutzner, et al., Circ. Res. 104, 87 (2009).

    Article  Google Scholar 

  21. C. Hidalgo, B. Hudson, J. Bogomolovas, et al., Circ. Res. 105, 631 (2009).

    Article  Google Scholar 

  22. A. Raskin, S. Lange, K. Banares, et al., J. Biol. Chem. 287, 29273 (2012).

    Article  Google Scholar 

  23. N. Hamdani, J. Krysiak, M. M. Kreusser, et al., Circ Res. 112, 664 (2013).

    Article  Google Scholar 

  24. C. G. Hidalgo, C. S. Chung, C. Saripalli, et al., J. Mol. Cell Cardiol. 54, 90 (2013).

    Article  Google Scholar 

  25. A. E. Muller, M. Kreiner, S. Kotter, et al., Front. Physiol. 5, 449 (2014). doi 10.3389/fphys.2014.00449

    Google Scholar 

  26. D. B. Tinker, H. J. Harlow, and T. D. Beck, Physiol. Zool. 71, 414 (1998).

    Article  Google Scholar 

  27. J. Udaka, S. Ohmori, T. Terui, et al., Gen. Physiol., 131, 33 (2008). doi: 10.1085/jgp.200709888.

    Article  Google Scholar 

  28. B. S. Shenkman, Z. A. Podlubnaya, I. M. Vikhlyantsev, et al., Biophysics (Moscow) 49, 807 (2004).

    Google Scholar 

  29. D. E. Goll, G. Neti, S. W. Mares, and V. F. Thompson, J. Anim. Sci. 86 (Suppl. 14), E19 (2008).

    Article  Google Scholar 

  30. F. Di Lisa, R. De Tullio, F. Salamino, et al., Biochem. J. 308 (1), 57 (1995).

    Article  Google Scholar 

  31. C. A. Ottenheijm, N. C. Voermans, B. D. Hudson, et al., J. Appl. Physiol. 112, 1157 (2012). doi 10.1152/japplphysiol.01166.2011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Vikhlyantsev.

Additional information

Original Russian Text © N.N. Salmov, Yu.V. Gritsyna, A.D. Ulanova, I.M. Vikhlyantsev, Z.A. Podlubnaya, 2015, published in Biofizika, 2015, Vol. 60, No. 4, pp. 829–832.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmov, N.N., Gritsyna, Y.V., Ulanova, A.D. et al. On the role of titin phosphorylation in the development of muscular atrophy. BIOPHYSICS 60, 684–686 (2015). https://doi.org/10.1134/S0006350915040193

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915040193

keywords

Navigation