Skip to main content
Log in

Association of Increased Homocysteine Levels with Impaired Folate Metabolism and Vitamin B Deficiency in Early-Onset Multiple Sclerosis

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The contents of homocysteine (HCy), cyanocobalamin (vitamin B12), folic acid (vitamin B9), and pyridoxine (vitamin B6) were analyzed and the genotypes of the main gene polymorphisms associated with folate metabolism (C677T and A1298C of the MTHFR gene, A2756G of the MTR gene and A66G of the MTRR gene) were determined in children at the onset of multiple sclerosis (MS) (with disease duration of no more than six months), healthy children under 18 years (control group), healthy adults without neurological pathology, adult patients with MS at the onset of disease, and adult patients with long-term MS. A significant increase in the HCy levels was found in children at the MS onset compared to healthy children of the corresponding age. It was established that the content of HCy in children has a high predictive value. At the same time, an increase in the HCy levels was not accompanied by the deficiency of vitamins B6, B9, and B12 in the blood. The lack of correlation between the laboratory signs of vitamin deficiency and HCy levels may be due to the polymorphic variants of folate cycle genes. An increased HCy level should be considered as a marker of functional disorders of folate metabolism accompanying the development of pathological process in pediatric MS. Our finding can be used to develop new approaches to the prevention of demyelination in children and treatment of pediatric MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Abbreviations

CNS:

central nervous system

Hcy:

homocysteine

MS:

multiple sclerosis

MTHF:

methylenetetrahydrofolate reductase

MTR:

methionine synthase

MTRR:

methionine synthase reductase

References

  1. Compston, A., and Coles, A. (2008) Multiple sclerosis, Lancet, 372, 1502-1517, https://doi.org/10.1016/S0140-6736(08)61620-7.

    Article  CAS  PubMed  Google Scholar 

  2. Charabati, M., Wheeler, M. A., Weiner, H. L., and Quintana, F. J. (2023) Multiple sclerosis: Neuroimmune crosstalk and therapeutic targeting, Cell, 186, 1309-1327, https://doi.org/10.1016/j.cell.2023.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brenton, J. N., Kammeyer, R., Gluck, L., Schreiner, T., and Makhani, N. (2020) Multiple sclerosis in children: current and emerging concepts, Semin Neuro., 40, 192-200, https://doi.org/10.1055/s-0040-1703000.

    Article  Google Scholar 

  4. Simone, I. L., Carrara, D., Tortorella, C., Liguori, M., Lepore, V., Pellegrini, F., Bellacosa, A., Ceccarelli, A., Pavone, I., and Livrea, P. (2002) Course and prognosis in early-onset MS: comparison with adult-onset forms, Neurology, 59, 1922-1928, https://doi.org/10.1212/01.wnl.0000036907.37650.8e.

    Article  CAS  PubMed  Google Scholar 

  5. Renoux, C., Vukusic, S., Mikaeloff, Y., Edan, G., Clanet, M., et al. (2007) Natural history of multiple sclerosis with childhood onset, N. Engl. J. Med., 356, 2603-2613, https://doi.org/10.1056/NEJMoa067597.

    Article  CAS  PubMed  Google Scholar 

  6. Krysko, K. M., Graves, J. S., Rensel, M., Weinstock-Guttman, B., Rutatangwa, A., et al. (2020) US network of Pediatric MS centers. Real-world effectiveness of initial disease-modifying therapies in pediatric multiple sclerosis, Ann. Neurol., 88, 42-55, https://doi.org/10.1002/ana.25737.

    Article  CAS  PubMed  Google Scholar 

  7. Weng, Q., Wang, J., Wang, J., Tan, B., Wang, J., et al. (2017) Folate metabolism regulates oligodendrocyte survival and differentiation by modulating AMPKα activity, Sci. Rep., 7, 1705, https://doi.org/10.1038/s41598-017-01732-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McGarel, C., Pentieva, K., Strain, J. J., and McNulty, H. (2015) Emerging roles for folate and related B-vitamins in brain health across the lifecycle, Proc. Nutr. Soc., 74, 46-55, https://doi.org/10.1017/S0029665114001554.

    Article  CAS  PubMed  Google Scholar 

  9. Naninck, E. F. G., Stijger, P. C., and Brouwer-Brolsma, E. M. (2019) The importance of maternal folate status for brain development and function of offspring, Adv. Nutr., 10, 502-519, https://doi.org/10.1093/advances/nmy120.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zou, R., El Marroun, H., Cecil, C., Jaddoe, V. W. V., Hillegers, M., et al. (2021) Maternal folate levels during pregnancy and offspring brain development in late childhood, Clin. Nutr., 40, 3391-3400, https://doi.org/10.1016/j.clnu.2020.11.025.

    Article  CAS  PubMed  Google Scholar 

  11. Polman, C. H., Reingold, S. C., Edan, G., Filippi, M., Hartung, H. P., et al. (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”, Ann. Neurol., 58, 840-846, https://doi.org/10.1002/ana.20703.

    Article  PubMed  Google Scholar 

  12. Thompson, A. J., Banwell, B. L., Barkhof, F., Carroll, W. M., Coetzee, T., et al. (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria, Lancet Neurol., 17, 162-173, https://doi.org/10.1016/S1474-4422(17)30470-2.

    Article  PubMed  Google Scholar 

  13. Ganguly, P., and Alam, S. F. (2015) Role of homocysteine in the development of cardiovascular disease, Nutr. J., 14, 6, https://doi.org/10.1186/1475-2891-14-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ansari, R., Mahta, A., Mallack, E., and Luo, J. J. (2014) Hyperhomocysteinemia and neurologic disorders: a review, J. Clin. Neurol., 10, 281-288, https://doi.org/10.3988/jcn.2014.10.4.281.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Farina, N., Jernerén, F., Turner, C., Hart, K., and Tabet, N. (2017) Homocysteine concentrations in the cognitive progression of Alzheimer’s disease, Exp. Gerontol., 99, 146-150, https://doi.org/10.1016/j.exger.2017.10.008.

    Article  CAS  PubMed  Google Scholar 

  16. Kocer, B., Guven, H., Conkbayir, I., Comoglu, S. S., and Delibas, S. (2016) The effect of hyperhomocysteinemia on motor symptoms, cognitive status, and vascular risk in patients with Parkinson’s disease, Parkinsons Dis., 2016, 1589747, https://doi.org/10.1155/2016/1589747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Al-Kuraishy, H. M., Al-Gareeb, A. I., Elewa, Y. H. A., Zahran, M. H., Alexiou, A., et al. (2023) Parkinson’s disease risk and hyperhomocysteinemia: the possible link, Cell Mol. Neurobiol., 43, 2743-2759, https://doi.org/10.1007/s10571-023-01350-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramsaransing, G. S., Fokkema, M. R., Teelken, A., Arutjunyan, A. V., Koch, M., and De Keyser, J. (2006) Plasma homocysteine levels in multiple sclerosis, J. Neurol. Neurosurg. Psychiatry, 77, 189-192, https://doi.org/10.1136/jnnp.2005.072199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, X., Yuan, J., Han, J., and Hu, W. (2020) Serum levels of homocysteine, Vitamin B12 and folate in patients with multiple sclerosis: an updated meta-analysis, Int. J. Med. Sci., 17, 751-761, https://doi.org/10.7150/ijms.42058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kararizou, E., Paraskevas, G., Triantafyllou, N., Koutsis, G., Evangelopoulos, M. E., et al. (2013) Plasma homocysteine levels in patients with multiple sclerosis in the Greek population, J. Chin. Med. Assoc., 76, 611-614, https://doi.org/10.1016/j.jcma.2013.07.002.

    Article  CAS  PubMed  Google Scholar 

  21. Bystrická, Z., Laubertová, L., Ďurfinová, M., and Paduchová, Z. (2017) Methionine metabolism and multiple sclerosis, Biomarkers, 22, 747-754, https://doi.org/10.1080/1354750X.2017.1334153.

    Article  PubMed  Google Scholar 

  22. Oliveira, S. R., Flauzino, T., Sabino, B. S., Kallaur, A. P., Alfieri, D. F., et al. (2018) Elevated plasma homocysteine levels are associated with disability progression in patients with multiple sclerosis, Metab. Brain Dis., 33, 1393-1399, https://doi.org/10.1007/s11011-018-0224-4.

    Article  CAS  PubMed  Google Scholar 

  23. Teunissen, C. E., Killestein, J., Kragt, J. J., Polman, C. H., Dijkstra, C. D., and Blom, H. J. (2008) Serum homocysteine levels in relation to clinical progression in multiple sclerosis, J. Neurol. Neurosurg. Psychiatry, 79, 1349-1353, https://doi.org/10.1136/jnnp.2008.151555.

    Article  CAS  PubMed  Google Scholar 

  24. Mititelu, R. R., Albu, C. V., Bacanoiu, M. V., Padureanu, V., Padureanu, R., et al. (2021) Homocysteine as a predictor tool in multiple sclerosis, Discoveries (Craiova), 9, e135, https://doi.org/10.15190/d.2021.14.

    Article  PubMed  Google Scholar 

  25. Pietrzik, K., and Brönstrup, A. (1998) Vitamins B12, B6 and folate as determinants of homocysteine concentration in the healthy population, Eur. J. Pediatr., 157, S135-S138, https://doi.org/10.1007/pl00014298.

    Article  CAS  PubMed  Google Scholar 

  26. Jakubowski, H. (2019) Homocysteine modification in protein structure/function and human disease, Physiol. Rev., 99, 555-604, https://doi.org/10.1152/physrev.00003.2018.

    Article  CAS  PubMed  Google Scholar 

  27. Thybikov, N. N., and Thybikova, N. M. (2007) The role of homocysteine in human pathology [in Russian], Usp. Sovr. Biol., 127, 471-481.

    Google Scholar 

  28. Smith, A. D., and Refsum, H. (2021) Homocysteine – from disease biomarker to disease prevention, J. Intern. Med., 290, 826-854, https://doi.org/10.1111/joim.13279.

    Article  CAS  PubMed  Google Scholar 

  29. Tsai, M. Y., Bignell, M., Yang, F., Welge, B. G., Graham, K. J., and Hanson, N. Q. (2000) Polygenic influence on plasma homocysteine: association of two prevalent mutations, the 844ins68 of cystathionine beta-synthase and A(2756)G of methionine synthase, with lowered plasma homocysteine levels, Atherosclerosis, 149, 131-137, https://doi.org/10.1016/s0021-9150(99)00297-x.

    Article  CAS  PubMed  Google Scholar 

  30. Raghubeer, S., and Matsha, T. E. (2021) Methylenetetrahydrofolate (MTHFR), the one-carbon cycle, and cardiovascular risks, Nutrients, 13, 4562, https://doi.org/10.3390/nu13124562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, W. X., Dai, S. X., Zheng, J. J., Liu, J. Q., and Huang, J. F. (2015) Homocysteine metabolism gene polymorphisms (MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) jointly elevate the risk of folate deficiency, Nutrients, 7, 6670-6687, https://doi.org/10.3390/nu7085303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ruet, A. (2018) Update on pediatric-onset multiple sclerosis, Rev. Neurol. (Paris), 174, 398-407, https://doi.org/10.1016/j.neurol.2018.04.003.

    Article  CAS  PubMed  Google Scholar 

  33. Khabirov, F. A., Khaybullin, T. I., Granatov, E. V., Averyanova, L. A., Babicheva, N. N., Khaibullina, A. R., Shikhova, V. A., and Yakupov, M. A. (2022) Differential diagnosis of multiple sclerosis in children [in Russian], S. S. Korsakov J. Neurol. Psychiatry, 122, 60-67, https://doi.org/10.17116/jnevro202212207260.

    Article  CAS  Google Scholar 

  34. Pfeifenbring, S., Bunyan, R. F., Metz, I., Röver, C., Huppke, P., et al. (2015) Extensive acute axonal damage in pediatric multiple sclerosis lesions, Ann. Neurol., 77, 655-667, https://doi.org/10.1002/ana.24364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alroughani, R., and Boyko, A. (2018) Pediatric multiple sclerosis: a review, BMC Neurol., 18, 27, https://doi.org/10.1186/s12883-018-1026-3.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ghezzi, A., Goretti, B., Portaccio, E., Roscio, M., and Amato, M. P. (2010) Cognitive impairment in pediatric multiple sclerosis, Neurol. Sci., 31 (Suppl 2), S215-S218, https://doi.org/10.1007/s10072-010-0437-8.

    Article  Google Scholar 

  37. Weisbrot, D., Charvet, L., Serafin, D., Milazzo, M., Preston, T., et al. (2014) Psychiatric diagnoses and cognitive impairment in pediatric multiple sclerosis, Mult. Scler., 20, 588-593, https://doi.org/10.1177/1352458513504249.

    Article  PubMed  Google Scholar 

  38. Portaccio, E., De Meo, E., Bellinvia, A., and Amato, M. P. (2021) Cognitive issues in pediatric multiple sclerosis, Brain Sci., 11, 442, https://doi.org/10.3390/brainsci11040442.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhloba, A. A., and Subbotina, T. F. (2019) The evaluation of folate status using total homocysteine in hypertensive patients [in Russian], Med. J. Russ. Federat., 25, 158-165, https://doi.org/10.18821/0869-2106-2019-25-3-158-165.

    Article  Google Scholar 

  40. Bates, C. J., Mansoor, M. A., Gregory, J., Pentiev, K., and Prentice, A. (2002) Correlates of plasma homocysteine, cysteine and cysteinyl-glycine in respondents in the British National Diet and Nutrition Survey of young people aged 4-18 years, and a comparison with the survey of people aged 65 years and over, Br. J. Nutr., 87, 71-79, https://doi.org/10.1079/BJN2001479.

    Article  CAS  PubMed  Google Scholar 

  41. Polushin, A. Yu., Odinak, M. M., Yanishevsky, S. N., Golokhvastov, S. Yu., and Tsygan, N. V. (2013) Hyperhomocysteinemia as predictor of stroke severity on background of extensive brain substance damage [in Russian], Vestn. Russ. Milit. Med. Acad., 4, 89-94.

    Google Scholar 

  42. Ho, P. I., Ortiz, D., Rogers, E., and Shea, T. B. (2002) Multiple aspects of homocysteine neurotoxicity: glutamate excitotoxicity, kinase hyperactivation and DNA damage, J. Neurosci. Res., 70, 694-702, https://doi.org/10.1002/jnr.10416.

    Article  CAS  PubMed  Google Scholar 

  43. Beard, R. S., Jr., Reynolds, J. J., and Bearden, S. E. (2011) Hyperhomocysteinemia increases permeability of the blood-brain barrier by NMDA receptor-dependent regulation of adherens and tight junctions, Blood, 118, 2007-2014, https://doi.org/10.1182/blood-2011-02-338269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tawfik, A., Elsherbiny, N. M., Zaidi, Y., and Rajpurohit, P. (2021) Homocysteine and age-related central nervous system diseases: role of inflammation, Int. J. Mol. Sci., 22, 6259, https://doi.org/10.3390/ijms22126259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dubchenko, E., Ivanov, A., Spirina, N., Smirnova, N., Melnikov, M., et al. (2020) Hyperhomocysteinemia and endothelial dysfunction in multiple sclerosis, Brain Sci., 10, 637, https://doi.org/10.3390/brainsci10090637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Spirina, N. N., Spirin, N. N., Kiseleva, E. V., Dubchenko, E. A., and Boyko, A. N. (2021) Homocysteine and markers of endothelial dysfunction in multiple sclerosis [in Russian], S. S. Korsakov J. Neurol. Psychiatry, 121, 90-93, https://doi.org/10.17116/jnevro202112107290.

    Article  CAS  Google Scholar 

  47. Perła-Kaján, J., and Jakubowski, H. (2019) Dysregulation of epigenetic mechanisms of gene expression in the pathologies of hyperhomocysteinemia, Int. J. Mol. Sci., 20, 3140, https://doi.org/10.3390/ijms20133140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Coppedè, F., Stoccoro, A., Tannorella, P., and Migliore, L. (2019) Plasma homocysteine and polymorphisms of genes involved in folate metabolism correlate with DNMT1 gene methylation levels, Metabolites, 9, 298, https://doi.org/10.3390/metabo9120298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was carried out with financial support from the Russian Science Foundation and the St. Petersburg Science Foundation (project no. 22-25-20191).

Author information

Authors and Affiliations

Authors

Contributions

V.I.L. wrote the text of the article; E.A.Ts. and E.A.Ch. conducted the experiments; V.I.L., G.N.B., E.Yu.S., A.V.D., and I.N.A. discussed the results; E.Yu.S. edited the manuscript; A.V.D. developed the concept; A.V.D. and I.N.A. supervised the study.

Corresponding author

Correspondence to Victoria I. Lioudyno.

Ethics declarations

All procedures performed during the study were in accordance with the ethical standards of the national research ethics committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed voluntary consent was obtained from all patients and control subjects included in the study. The study was approved by the Local Ethics Committee of the Federal State Budgetary Institution “IEM” protocol no. 2/22 dated 04/06/2022. The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lioudyno, V.I., Tsymbalova, E.A., Chernyavskaya, E.A. et al. Association of Increased Homocysteine Levels with Impaired Folate Metabolism and Vitamin B Deficiency in Early-Onset Multiple Sclerosis. Biochemistry Moscow 89, 562–573 (2024). https://doi.org/10.1134/S0006297924030143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924030143

Keywords

Navigation