Skip to main content
Log in

Therapy-Induced Tumor Cell Senescence: Mechanisms and Circumvention

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Plasticity of tumor cells (multitude of molecular regulation pathways) allows them to evade cytocidal effects of chemo- and/or radiation therapy. Metabolic adaptation of the surviving cells is based on transcriptional reprogramming. Similarly to the process of natural cell aging, specific features of the survived tumor cells comprise the therapy-induced senescence phenotype. Tumor cells with this phenotype differ from the parental cells since they become less responsive to drugs and form aggressive progeny. Importance of the problem is explained by the general biological significance of transcriptional reprogramming as a mechanism of adaptation to stress, and by the emerging potential of its pharmacological targeting. In this review we analyze the mechanisms of regulation of the therapy-induced tumor cell senescence, as well as new drug combinations aimed to prevent this clinically unfavorable phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

BIRC5 :

gene encoding survivin protein

CDK:

cyclin-dependent protein kinase

EMT:

epithelial–mesenchymal transition

ROS:

reactive oxygen species

SASP:

senescence-associated secretory phenotype

References

  1. Kalyanaraman, B. (2020) Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: have we been barking up the wrong tree? Redox Biol., 29, 101394, https://doi.org/10.1016/j.redox.2019.101394.

    Article  CAS  PubMed  Google Scholar 

  2. White, S. C., Anderson, H., Jayson, G. C., Ashcroft, L., Ranson, M., and Thatcher, N. (2000) Randomised phase II study of cisplatin-etoposide versus infusional carboplatin in advanced non-small-cell lung cancer and mesothelioma, Ann. Oncol., 11, 201-206, https://doi.org/10.1023/a:1008328605413.

    Article  CAS  PubMed  Google Scholar 

  3. Cai, F., Luis, M. A. F., Lin, X., Wang, M., Cai, L., Cen, C., and Biskup, E. (2019) Anthracycline-induced cardiotoxicity in the chemotherapy treatment of breast cancer: Preventive strategies and treatment, Mol. Clin. Oncol., 11, 15-23, https://doi.org/10.3892/mco.2019.1854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Te Poele, R. H., Okorokov, A. L., Jardine, L., Cummings, J., and Joel, S. P. (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo, Cancer Res., 62, 1876-1883.

    CAS  PubMed  Google Scholar 

  5. Demaria, M., O’Leary, M. N., Chang, J., Shao, L., Liu, S., Alimirah, F., Koenig, K., Le, C., Mitin, N., Deal, A. M., Alston, S., Academia, E. C., Kilmarx, S., Valdovinos, A., Wang, B., de Bruin, A., Kennedy, B. K., Melov, S., Zhou, D., Sharpless, N. E., et al. (2017) Cellular senescence promotes adverse effects of chemotherapy and cancer relapse, Cancer Discov., 7, 165-176, https://doi.org/10.1158/2159-8290.CD-16-0241.

    Article  CAS  PubMed  Google Scholar 

  6. Spallarossa, P., Altieri, P., Aloi, C., Garibaldi, S., Barisione, C., Ghigliotti, G., Fugazza, G., Barsotti, A., and Brunelli, C. (2009) Doxorubicin induces senescence or apoptosis in rat neonatal cardiomyocytes by regulating the expression levels of the telomere binding factors 1 and 2, Am. J. Physiol. Heart Circ. Physiol., 297, H2169-2181, https://doi.org/10.1152/ajpheart.00068.2009.

    Article  CAS  PubMed  Google Scholar 

  7. Probin, V., Wang, Y., Bai, A., and Zhou, D. (2006) Busulfan selectively induces cellular senescence but not apoptosis in WI38 fibroblasts via a p53-independent but extracellular signal-regulated kinase-p38 mitogen-activated protein kinase-dependent mechanism, J. Pharmacol. Exp. Ther., 319, 551-560, https://doi.org/10.1124/jpet.106.107771.

    Article  CAS  PubMed  Google Scholar 

  8. Seluanov, A., Gorbunova, V., Falcovitz, A., Sigal, A., Milyavsky, M., Zurer, I., Shohat, G., Goldfinger, N., and Rotter, V. (2001) Change of the death pathway in senescent human fibroblasts in response to DNA damage is caused by an inability to stabilize p53, Mol. Cell Biol., 21, 1552-1564, https://doi.org/10.1128/MCB.21.5.1552-1564.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Soto-Gamez, A., Quax, W. J., and Demaria, M. (2019) Regulation of survival networks in senescent cells: from mechanisms to interventions, J. Mol. Biol., 431, 2629-2643, https://doi.org/10.1016/j.jmb.2019.05.036.

    Article  CAS  PubMed  Google Scholar 

  10. Chen, Z., Cao, K., Xia, Y., Li, Y., Hou, Y., Wang, L., Li, L., Chang, L., and Li, W. (2019) Cellular senescence in ionizing radiation (review), Oncol. Rep., 42, 883-894, https://doi.org/10.3892/or.2019.7209.

    Article  CAS  PubMed  Google Scholar 

  11. Fitsiou, E., Soto-Gamez, A., and Demaria, M. (2022) Biological functions of therapy-induced senescence in cancer, Semin. Cancer Biol., 81, 5-13, https://doi.org/10.1016/j.semcancer.2021.03.021.

    Article  CAS  PubMed  Google Scholar 

  12. Mijit, M., Caracciolo, V., Melillo, A., Amicarelli, F., and Giordano, A. (2020) Role of p53 in the regulation of cellular senescence, Biomolecules, 10, 420, https://doi.org/10.3390/biom10030420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rohnalter, V., Roth, K., Finkernagel, F., Adhikary, T., Obert, J., Dorzweiler, K., Bensberg, M., Muller-Brusselbach, S., and Muller, R. (2015) A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype, Oncotarget, 6, 40005-40025, https://doi.org/10.18632/oncotarget.5552.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Saleh, T., Bloukh, S., Carpenter, V. J., Alwohoush, E., Bakeer, J., Darwish, S., Azab, B., and Gewirtz, D. A. (2020) Therapy-induced senescence: An “old” friend becomes the enemy, Cancers (Basel), 12, 822, https://doi.org/10.3390/cancers12040822.

    Article  CAS  PubMed  Google Scholar 

  15. Shtil, A. A. (2002) Emergence of multidrug resistance in leukemia cells during chemotherapy: mechanisms and prevention, J. Hematother. Stem Cell Res., 11, 231-241, https://doi.org/10.1089/152581602753658439.

    Article  CAS  PubMed  Google Scholar 

  16. Mosteiro, L., Pantoja, C., Alcazar, N., Marion, R. M., Chondronasiou, D., Rovira, M., Fernandez-Marcos, P. J., Munoz-Martin, M., Blanco-Aparicio, C., Pastor, J., Gomez-Lopez, G., De Martino, A., Blasco, M. A., Abad, M., and Serrano, M. (2016) Tissue damage and senescence provide critical signals for cellular reprogramming in vivo, Science, 354, aaf4445, https://doi.org/10.1126/science.aaf4445.

    Article  CAS  PubMed  Google Scholar 

  17. Gabellini, C., Castellini, L., Trisciuoglio, D., Kracht, M., Zupi, G., and Del Bufalo, D. (2008) Involvement of nuclear factor-kappa B in bcl-xL-induced interleukin 8 expression in glioblastoma, J. Neurochem., 107, 871-882, https://doi.org/10.1111/j.1471-4159.2008.05661.x.

    Article  CAS  PubMed  Google Scholar 

  18. Fan, Y., Mao, R., and Yang, J. (2013) NF-kappaB and STAT3 signaling pathways collaboratively link inflammation to cancer, Protein Cell, 4, 176-185, https://doi.org/10.1007/s13238-013-2084-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, B., Kohli, J., and Demaria, M. (2020) Senescent cells in cancer therapy: friends or foes? Trends Cancer, 6, 838-857, https://doi.org/10.1016/j.trecan.2020.05.004.

    Article  CAS  PubMed  Google Scholar 

  20. Calcinotto, A., Kohli, J., Zagato, E., Pellegrini, L., Demaria, M., and Alimonti, A. (2019) Cellular senescence: aging, cancer, and injury, Physiol. Rev., 99, 1047-1078, https://doi.org/10.1152/physrev.00020.2018.

    Article  CAS  PubMed  Google Scholar 

  21. Calcinotto, A., and Alimonti, A. (2017) Aging tumour cells to cure cancer: “pro-senescence” therapy for cancer, Swiss Med. Wkly, 147, w14367, https://doi.org/10.4414/smw.2017.14367.

    Article  CAS  PubMed  Google Scholar 

  22. Milanovic, M., Fan, D. N. Y., Belenki, D., Dabritz, J. H. M., Zhao, Z., Yu, Y., Dorr, J. R., Dimitrova, L., Lenze, D., Monteiro Barbosa, I. A., Mendoza-Parra, M. A., Kanashova, T., Metzner, M., Pardon, K., Reimann, M., Trumpp, A., Dorken, B., Zuber, J., Gronemeyer, H., Hummel, M., et al. (2018) Senescence-associated reprogramming promotes cancer stemness, Nature, 553, 96-100, https://doi.org/10.1038/nature25167.

    Article  CAS  PubMed  Google Scholar 

  23. Karabicici, M., Alptekin, S., Firtina Karagonlar, Z., and Erdal, E. (2021) Doxorubicin-induced senescence promotes stemness and tumorigenicity in EpCAM-/CD133-nonstem cell population in hepatocellular carcinoma cell line, HuH-7, Mol. Oncol., 15, 2185-2202, https://doi.org/10.1002/1878-0261.12916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pacifico, F., Badolati, N., Mellone, S., Stornaiuolo, M., Leonardi, A., and Crescenzi, E. (2021) Glutamine promotes escape from therapy-induced senescence in tumor cells, Aging (Albany NY), 13, 20962-20991, https://doi.org/10.18632/aging.203495.

    Article  CAS  PubMed  Google Scholar 

  25. Dorr, J. R., Yu, Y., Milanovic, M., Beuster, G., Zasada, C., Dabritz, J. H., Lisec, J., Lenze, D., Gerhardt, A., Schleicher, K., Kratzat, S., Purfurst, B., Walenta, S., Mueller-Klieser, W., Graler, M., Hummel, M., Keller, U., Buck, A. K., Dorken, B., Willmitzer, L., et al. (2013) Synthetic lethal metabolic targeting of cellular senescence in cancer therapy, Nature, 501, 421-425, https://doi.org/10.1038/nature12437.

    Article  CAS  PubMed  Google Scholar 

  26. Ratushnyy, A. Y., Rudimova, Y. V., and Buravkova, L. B. (2020) Replicative senescence and expression of autophagy genes in mesenchymal stromal cells, Biochemistry (Moscow), 85, 1169-1177, https://doi.org/10.1134/S0006297920100053.

    Article  CAS  PubMed  Google Scholar 

  27. Yang, N., and Sen, P. (2018) The senescent cell epigenome, Aging (Albany NY), 10, 3590-3609, https://doi.org/10.18632/aging.101617.

    Article  CAS  PubMed  Google Scholar 

  28. Gonzalez-Meljem, J. M., Apps, J. R., Fraser, H. C., and Martinez-Barbera, J. P. (2018) Paracrine roles of cellular senescence in promoting tumourigenesis, Br. J. Cancer, 118, 1283-1288, https://doi.org/10.1038/s41416-018-0066-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao, Z., Dong, Q., Liu, X., Wei, L., Liu, L., Li, Y., and Wang, X. (2020) Dynamic transcriptome profiling in DNA damage-induced cellular senescence and transient cell-cycle arrest, Genomics, 112, 1309-1317, https://doi.org/10.1016/j.ygeno.2019.07.020.

    Article  CAS  PubMed  Google Scholar 

  30. Gonzalez-Gualda, E., Baker, A. G., Fruk, L., and Munoz-Espin, D. (2021) A guide to assessing cellular senescence in vitro and in vivo, FEBS J., 288, 56-80, https://doi.org/10.1111/febs.15570.

    Article  CAS  PubMed  Google Scholar 

  31. Davan-Wetton, C. S. A., Pessolano, E., Perretti, M., and Montero-Melendez, T. (2021) Senescence under appraisal: hopes and challenges revisited, Cell. Mol. Life Sci., 78, 3333-3354, https://doi.org/10.1007/s00018-020-03746-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hernandez-Segura, A., Nehme, J., and Demaria, M. (2018) Hallmarks of cellular senescence, Trends Cell Biol., 28, 436-453, https://doi.org/10.1016/j.tcb.2018.02.001.

    Article  CAS  PubMed  Google Scholar 

  33. Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., Pereira-Smith, O. et al. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo, Proc. Natl. Acad. Sci. USA, 92, 9363-9367, https://doi.org/10.1073/pnas.92.20.9363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cahu, J., and Sola, B. (2013) A sensitive method to quantify senescent cancer cells, J. Vis. Exp., 2, 50494, https://doi.org/10.3791/50494.

    Article  CAS  Google Scholar 

  35. Mikula-Pietrasik, J., Niklas, A., Uruski, P., Tykarski, A., and Ksiazek, K. (2020) Mechanisms and significance of therapy-induced and spontaneous senescence of cancer cells, Cell. Mol. Life Sci., 77, 213-229, https://doi.org/10.1007/s00018-019-03261-8.

    Article  CAS  PubMed  Google Scholar 

  36. Dikovskaya, D., Cole, J. J., Mason, S. M., Nixon, C., Karim, S. A., McGarry, L., Clark, W., Hewitt, R. N., Sammons, M. A., Zhu, J., Athineos, D., Leach, J. D., Marchesi, F., van Tuyn, J., Tait, S. W., Brock, C., Morton, J. P., Wu, H., Berger, S. L., Blyth, K., et al. (2015) Mitotic stress is an integral part of the oncogene-induced senescence program that promotes multinucleation and cell cycle arrest, Cell Rep., 12, 1483-1496, https://doi.org/10.1016/j.celrep.2015.07.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matias, I., Diniz, L. P., Damico, I. V., Araujo, A. P. B., Neves, L. D. S., Vargas, G., Leite, R. E. P., Suemoto, C. K., Nitrini, R., Jacob-Filho, W., Grinberg, L. T., Hol, E. M., Middeldorp, J., and Gomes, F. C. A. (2022) Loss of lamin-B1 and defective nuclear morphology are hallmarks of astrocyte senescence in vitro and in the aging human hippocampus, Aging Cell, 21, e13521, https://doi.org/10.1111/acel.13521.

    Article  CAS  PubMed  Google Scholar 

  38. Freund, A., Laberge, R. M., Demaria, M., and Campisi, J. (2012) Lamin B1 loss is a senescence-associated biomarker, Mol. Biol. Cell, 23, 2066-2075, https://doi.org/10.1091/mbc.E11-10-0884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liao, C., Xiao, Y., and Liu, L. (2020) The dynamic process and its dual effects on tumors of therapy-induced senescence, Cancer Manag. Res., 12, 13553-13566, https://doi.org/10.2147/CMAR.S285083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mosieniak, G., Sliwinska, M. A., Alster, O., Strzeszewska, A., Sunderland, P., Piechota, M., Was, H., and Sikora, E. (2015) Polyploidy formation in doxorubicin-treated cancer cells can favor escape from senescence, Neoplasia, 17, 882-893, https://doi.org/10.1016/j.neo.2015.11.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Czarnecka-Herok, J., Sliwinska, M. A., Herok, M., Targonska, A., Strzeszewska-Potyrala, A., Bojko, A., Wolny, A., Mosieniak, G., and Sikora, E. (2022) Therapy-induced senescent/polyploid cancer cells undergo atypical divisions associated with altered expression of meiosis, spermatogenesis and EMT genes, Int. J. Mol. Sci., 23, 8288, https://doi.org/10.3390/ijms23158288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kumari, R., and Jat, P. (2021) Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype, Front. Cell Dev. Biol., 9, 645593, https://doi.org/10.3389/fcell.2021.645593.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shtutman, M., Chang, B. D., Schools, G. P., and Broude, E. V. (2017) Cellular model of p21-induced senescence, Methods Mol. Biol., 1534, 31-39, https://doi.org/10.1007/978-1-4939-6670-7_3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Romanov, V. S., Pospelov, V. A., and Pospelova, T. V. (2012) Cyclin-dependent kinase inhibitor p21(Waf1): contemporary view on its role in senescence and oncogenesis, Biochemistry (Moscow), 77, 575-584, https://doi.org/10.1134/S000629791206003X.

    Article  CAS  PubMed  Google Scholar 

  45. Gire, V., and Dulic, V. (2015) Senescence from G2 arrest, revisited, Cell Cycle, 14, 297-304, https://doi.org/10.1080/15384101.2014.1000134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moein, S., Adibi, R., da Silva Meirelles, L., Nardi, N. B., and Gheisari, Y. (2020) Cancer regeneration: Polyploid cells are the key drivers of tumor progression, Biochim. Biophys. Acta Rev. Cancer, 1874, 188408, https://doi.org/10.1016/j.bbcan.2020.188408.

    Article  CAS  PubMed  Google Scholar 

  47. Wang, Q., Wu, P. C., Dong, D. Z., Ivanova, I., Chu, E., Zeliadt, S., Vesselle, H., and Wu, D. Y. (2013) Polyploidy road to therapy-induced cellular senescence and escape, Int. J. Cancer, 132, 1505-1515, https://doi.org/10.1002/ijc.27810.

    Article  CAS  PubMed  Google Scholar 

  48. Song, Y., Zhao, Y., Deng, Z., Zhao, R., and Huang, Q. (2021) Stress-induced polyploid giant cancer cells: unique way of formation and non-negligible characteristics, Front. Oncol., 11, 724781, https://doi.org/10.3389/fonc.2021.724781.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Niklander, S. E., Lambert, D. W., and Hunter, K. D. (2021) Senescent cells in cancer: wanted or unwanted citizens, Cells, 10, 3315, https://doi.org/10.3390/cells10123315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Coppe, J. P., Patil, C. K., Rodier, F., Sun, Y., Munoz, D. P., Goldstein, J., Nelson, P. S., Desprez, P. Y., and Campisi, J. (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor, PLoS Biol., 6, 2853-2868, https://doi.org/10.1371/journal.pbio.0060301.

    Article  CAS  PubMed  Google Scholar 

  51. Salminen, A., Kauppinen, A., and Kaarniranta, K. (2012) Emerging role of NF-kappaB signaling in the induction of senescence-associated secretory phenotype (SASP), Cell Signal., 24, 835-845, https://doi.org/10.1016/j.cellsig.2011.12.006.

    Article  CAS  PubMed  Google Scholar 

  52. Takasugi, M., Yoshida, Y., Hara, E., and Ohtani, N. (2022) The role of cellular senescence and SASP in tumour microenvironment, FEBS J., https://doi.org/10.1111/febs.16381.

    Article  PubMed  Google Scholar 

  53. Fisher, D. T., Appenheimer, M. M., and Evans, S. S. (2014) The two faces of IL-6 in the tumor microenvironment, Semin. Immunol., 26, 38-47, https://doi.org/10.1016/j.smim.2014.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Junaid, M., Lee, A., Kim, J., Park, T. J., and Lim, S. B. (2022) Transcriptional heterogeneity of cellular senescence in cancer, Mol. Cells, 45, 610-619, https://doi.org/10.14348/molcells.2022.0036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lau, L., and David, G. (2019) Pro- and anti-tumorigenic functions of the senescence-associated secretory phenotype, Expert Opin. Ther. Targets, 23, 1041-1051, https://doi.org/10.1080/14728222.2019.1565658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Faget, D. V., Ren, Q., and Stewart, S. A. (2019) Unmasking senescence: context-dependent effects of SASP in cancer, Nat. Rev. Cancer, 19, 439-453, https://doi.org/10.1038/s41568-019-0156-2.

    Article  CAS  PubMed  Google Scholar 

  57. Yang, L., Fang, J., and Chen, J. (2017) Tumor cell senescence response produces aggressive variants, Cell Death Discov., 3, 17049, https://doi.org/10.1038/cddiscovery.2017.49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bojko, A., Staniak, K., Czarnecka-Herok, J., Sunderland, P., Dudkowska, M., Sliwinska, M. A., Salmina, K., and Sikora, E. (2020) Improved autophagic flux in escapers from doxorubicin-induced senescence/polyploidy of breast cancer cells, Int. J. Mol. Sci., 21, 6084, https://doi.org/10.3390/ijms21176084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Puig, P. E., Guilly, M. N., Bouchot, A., Droin, N., Cathelin, D., Bouyer, F., Favier, L., Ghiringhelli, F., Kroemer, G., Solary, E., Martin, F., and Chauffert, B. (2008) Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy, Cell Biol. Int., 32, 1031-1043, https://doi.org/10.1016/j.cellbi.2008.04.021.

    Article  CAS  PubMed  Google Scholar 

  60. Song, Z., Pan, Y., Ling, G., Wang, S., Huang, M., Jiang, X., and Ke, Y. (2017) Escape of U251 glioma cells from temozolomide-induced senescence was modulated by CDK1/survivin signaling, Am. J. Transl. Res., 9, 2163-2180.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Luyties, O., and Taatjes, D. J. (2022) The Mediator kinase module: an interface between cell signaling and transcription, Trends Biochem. Sci., 47, 314-327, https://doi.org/10.1016/j.tibs.2022.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Richter, W. F., Nayak, S., Iwasa, J., and Taatjes, D. J. (2022) The Mediator complex as a master regulator of transcription by RNA polymerase II, Nat. Rev. Mol. Cell Biol., 23, 732-749, https://doi.org/10.1038/s41580-022-00498-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Saleh, T., Tyutyunyk-Massey, L., Murray, G. F., Alotaibi, M. R., Kawale, A. S., Elsayed, Z., Henderson, S. C., Yakovlev, V., Elmore, L. W., Toor, A., Harada, H., Reed, J., Landry, J. W., and Gewirtz, D. A. (2019) Tumor cell escape from therapy-induced senescence, Biochem. Pharmacol., 162, 202-212, https://doi.org/10.1016/j.bcp.2018.12.013.

    Article  CAS  PubMed  Google Scholar 

  64. Pluquet, O., Abbadie, C., and Coqueret, O. (2019) Connecting cancer relapse with senescence, Cancer Lett., 463, 50-58, https://doi.org/10.1016/j.canlet.2019.08.004.

    Article  CAS  PubMed  Google Scholar 

  65. Elmore, L. W., Di, X., Dumur, C., Holt, S. E., and Gewirtz, D. A. (2005) Evasion of a single-step, chemotherapy-induced senescence in breast cancer cells: implications for treatment response, Clin. Cancer Res., 11, 2637-2643, https://doi.org/10.1158/1078-0432.CCR-04-1462.

    Article  CAS  PubMed  Google Scholar 

  66. Jonchere, B., Vetillard, A., Toutain, B., Lam, D., Bernard, A. C., Henry, C., De Carne Trecesson, S., Gamelin, E., Juin, P., Guette, C., and Coqueret, O. (2015) Irinotecan treatment and senescence failure promote the emergence of more transformed and invasive cells that depend on anti-apoptotic Mcl-1, Oncotarget, 6, 409-426, https://doi.org/10.18632/oncotarget.2774.

    Article  PubMed  Google Scholar 

  67. Roberson, R. S., Kussick, S. J., Vallieres, E., Chen, S. Y., and Wu, D. Y. (2005) Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers, Cancer Res., 65, 2795-2803, https://doi.org/10.1158/0008-5472.CAN-04-1270.

    Article  CAS  PubMed  Google Scholar 

  68. Ashraf, H. M., Moser, J., and Spencer, S. L. (2019) Senescence evasion in chemotherapy: a sweet spot for p21, Cell, 178, 267-269, https://doi.org/10.1016/j.cell.2019.06.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Roninson, I. B. (2003) Tumor cell senescence in cancer treatment, Cancer Res., 63, 2705-2715.

    CAS  PubMed  Google Scholar 

  70. Hsu, C. H., Altschuler, S. J., and Wu, L. F. (2019) Patterns of early p21 dynamics determine proliferation-senescence cell fate after chemotherapy, Cell, 178, 361-373.e312, https://doi.org/10.1016/j.cell.2019.05.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Olszewska, A., Borkowska, A., Granica, M., Karolczak, J., Zglinicki, B., Kieda, C., and Was, H. (2021) Escape from cisplatin-induced senescence of hypoxic lung cancer cells can be overcome by hydroxychloroquine, Front. Oncol., 11, 738385, https://doi.org/10.3389/fonc.2021.738385.

    Article  PubMed  Google Scholar 

  72. Guillon, J., Petit, C., Moreau, M., Toutain, B., Henry, C., Roche, H., Bonichon-Lamichhane, N., Salmon, J. P., Lemonnier, J., Campone, M., Verriele, V., Lelievre, E., Guette, C., and Coqueret, O. (2019) Regulation of senescence escape by TSP1 and CD47 following chemotherapy treatment, Cell Death Dis., 10, 199, https://doi.org/10.1038/s41419-019-1406-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Guillon, J., Coquelet, H., Leman, G., Toutain, B., Petit, C., Henry, C., Boissard, A., Guette, C., and Coqueret, O. (2021) tRNA biogenesis and specific aminoacyl-tRNA synthetases regulate senescence stability under the control of mTOR, PLoS Genet., 17, e1009953, https://doi.org/10.1371/journal.pgen.1009953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. De Carne Trecesson, S., Guillemin, Y., Belanger, A., Bernard, A. C., Preisser, L., Ravon, E., Gamelin, E., Juin, P., Barre, B., and Coqueret, O. (2011) Escape from p21-mediated oncogene-induced senescence leads to cell dedifferentiation and dependence on anti-apoptotic Bcl-xL and MCL1 proteins, J. Biol. Chem., 286, 12825-12838, https://doi.org/10.1074/jbc.M110.186437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yew, T. L., Chiu, F. Y., Tsai, C. C., Chen, H. L., Lee, W. P., Chen, Y. J., Chang, M. C., and Hung, S. C. (2011) Knockdown of p21(Cip1/Waf1) enhances proliferation, the expression of stemness markers, and osteogenic potential in human mesenchymal stem cells, Aging Cell, 10, 349-361, https://doi.org/10.1111/j.1474-9726.2011.00676.x.

    Article  CAS  PubMed  Google Scholar 

  76. Yosef, R., Pilpel, N., Papismadov, N., Gal, H., Ovadya, Y., Vadai, E., Miller, S., Porat, Z., Ben-Dor, S., and Krizhanovsky, V. (2017) p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling, EMBO J., 36, 2280-2295, https://doi.org/10.15252/embj.201695553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vetillard, A., Jonchere, B., Moreau, M., Toutain, B., Henry, C., Fontanel, S., Bernard, A. C., Campone, M., Guette, C., and Coqueret, O. (2015) Akt inhibition improves irinotecan treatment and prevents cell emergence by switching the senescence response to apoptosis, Oncotarget, 6, 43342-43362, https://doi.org/10.18632/oncotarget.6126.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Martinez, L. A., Yang, J., Vazquez, E. S., Rodriguez-Vargas Mdel, C., Olive, M., Hsieh, J. T., Logothetis, C. J., and Navone, N. M. (2002) p21 modulates threshold of apoptosis induced by DNA-damage and growth factor withdrawal in prostate cancer cells, Carcinogenesis, 23, 1289-1296, https://doi.org/10.1093/carcin/23.8.1289.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, Y., Gao, Y., Zhang, G., Huang, S., Dong, Z., Kong, C., Su, D., Du, J., Zhu, S., Liang, Q., Zhang, J., Lu, J., and Huang, B. (2011) DNMT3a plays a role in switches between doxorubicin-induced senescence and apoptosis of colorectal cancer cells, Int. J. Cancer, 128, 551-561, https://doi.org/10.1002/ijc.25365.

    Article  CAS  PubMed  Google Scholar 

  80. Sohn, D., Essmann, F., Schulze-Osthoff, K., and Janicke, R. U. (2006) p21 blocks irradiation-induced apoptosis downstream of mitochondria by inhibition of cyclin-dependent kinase-mediated caspase-9 activation, Cancer Res., 66, 11254-11262, https://doi.org/10.1158/0008-5472.CAN-06-1569.

    Article  CAS  PubMed  Google Scholar 

  81. Kuang, Y., Kang, J., Li, H., Liu, B., Zhao, X., Li, L., Jin, X., and Li, Q. (2021) Multiple functions of p21 in cancer radiotherapy, J. Cancer Res. Clin. Oncol., 147, 987-1006, https://doi.org/10.1007/s00432-021-03529-2.

    Article  CAS  PubMed  Google Scholar 

  82. Doktorova, H., Hrabeta, J., Khalil, M. A., and Eckschlager, T. (2015) Hypoxia-induced chemoresistance in cancer cells: the role of not only HIF-1, Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 159, 166-177, https://doi.org/10.5507/bp.2015.025.

    Article  PubMed  Google Scholar 

  83. Jing, X., Yang, F., Shao, C., Wei, K., Xie, M., Shen, H., and Shu, Y. (2019) Role of hypoxia in cancer therapy by regulating the tumor microenvironment, Mol. Cancer, 18, 157, https://doi.org/10.1186/s12943-019-1089-9.

    Article  PubMed  PubMed Central  Google Scholar 

  84. White-Gilbertson, S., and Voelkel-Johnson, C. (2020) Giants and monsters: Unexpected characters in the story of cancer recurrence, Adv. Cancer Res., 148, 201-232, https://doi.org/10.1016/bs.acr.2020.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sabisz, M., and Skladanowski, A. (2009) Cancer stem cells and escape from drug-induced premature senescence in human lung tumor cells: implications for drug resistance and in vitro drug screening models, Cell Cycle, 8, 3208-3217, https://doi.org/10.4161/cc.8.19.9758.

    Article  CAS  PubMed  Google Scholar 

  86. Sikora, E., Czarnecka-Herok, J., Bojko, A., and Sunderland, P. (2022) Therapy-induced polyploidization and senescence: Coincidence or interconnection? Semin. Cancer Biol., 81, 83-95, https://doi.org/10.1016/j.semcancer.2020.11.015.

    Article  CAS  PubMed  Google Scholar 

  87. Lin, K. C., Torga, G., Sun, Y., Axelrod, R., Pienta, K. J., Sturm, J. C., and Austin, R. H. (2019) The role of heterogeneous environment and docetaxel gradient in the emergence of polyploid, mesenchymal and resistant prostate cancer cells, Clin. Exp. Metastasis, 36, 97-108, https://doi.org/10.1007/s10585-019-09958-1.

    Article  PubMed  Google Scholar 

  88. Achuthan, S., Santhoshkumar, T. R., Prabhakar, J., Nair, S. A., and Pillai, M. R. (2011) Drug-induced senescence generates chemoresistant stemlike cells with low reactive oxygen species, J. Biol. Chem., 286, 37813-37829, https://doi.org/10.1074/jbc.M110.200675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Niu, N., Zhang, J., Zhang, N., Mercado-Uribe, I., Tao, F., Han, Z., Pathak, S., Multani, A. S., Kuang, J., Yao, J., Bast, R. C., Sood, A. K., Hung, M. C., and Liu, J. (2016) Linking genomic reorganization to tumor initiation via the giant cell cycle, Oncogenesis, 5, e281, https://doi.org/10.1038/oncsis.2016.75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Niu, N., Mercado-Uribe, I., and Liu, J. (2017) Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells, Oncogene, 36, 4887-4900, https://doi.org/10.1038/onc.2017.72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Salmina, K., Bojko, A., Inashkina, I., Staniak, K., Dudkowska, M., Podlesniy, P., Rumnieks, F., Vainshelbaum, N. M., Pjanova, D., Sikora, E., and Erenpreisa, J. (2020) “Mitotic slippage” and extranuclear DNA in cancer chemoresistance: A focus on telomeres, Int. J. Mol. Sci., 21, 2779, https://doi.org/10.3390/ijms21082779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sikora, E., Mosieniak, G., and Sliwinska, M. A. (2016) Morphological and functional characteristic of senescent cancer cells, Curr. Drug Targets, 17, 377-387, https://doi.org/10.2174/1389450116666151019094724.

    Article  CAS  PubMed  Google Scholar 

  93. Was, H., Czarnecka, J., Kominek, A., Barszcz, K., Bernas, T., Piwocka, K., and Kaminska, B. (2018) Some chemotherapeutics-treated colon cancer cells display a specific phenotype being a combination of stem-like and senescent cell features, Cancer Biol. Ther., 19, 63-75, https://doi.org/10.1080/15384047.2017.1385675.

    Article  CAS  PubMed  Google Scholar 

  94. Diaz-Carballo, D., Saka, S., Klein, J., Rennkamp, T., Acikelli, A. H., Malak, S., Jastrow, H., Wennemuth, G., Tempfer, C., Schmitz, I., Tannapfel, A., and Strumberg, D. (2018) A distinct oncogenerative multinucleated cancer cell serves as a source of stemness and tumor heterogeneity, Cancer Res., 78, 2318-2331, https://doi.org/10.1158/0008-5472.CAN-17-1861.

    Article  CAS  PubMed  Google Scholar 

  95. Was, H., Barszcz, K., Czarnecka, J., Kowalczyk, A., Bernas, T., Uzarowska, E., Koza, P., Klejman, A., Piwocka, K., Kaminska, B., and Sikora, E. (2017) Bafilomycin A1 triggers proliferative potential of senescent cancer cells in vitro and in NOD/SCID mice, Oncotarget, 8, 9303-9322, https://doi.org/10.18632/oncotarget.14066.

    Article  PubMed  Google Scholar 

  96. Chen, J., Wei, H., Cheng, J., Xie, B., Wang, B., Yi, J., Tian, B., Liu, Z., Wang, F., and Zhang, Z. (2018) Characteristics of doxorubicin-selected multidrug-resistant human leukemia HL-60 cells with tolerance to arsenic trioxide and contribution of leukemia stem cells, Oncol. Lett., 15, 1255-1262, https://doi.org/10.3892/ol.2017.7353.

    Article  CAS  PubMed  Google Scholar 

  97. Zhou, H. M., Zhang, J. G., Zhang, X., and Li, Q. (2021) Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents, Signal. Transduct. Target Ther., 6, 62, https://doi.org/10.1038/s41392-020-00430-1.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Yuan, R., Liu, Q., Segeren, H. A., Yuniati, L., Guardavaccaro, D., Lebbink, R. J., Westendorp, B., and de Bruin, A. (2019) Cyclin F-dependent degradation of E2F7 is critical for DNA repair and G2-phase progression, EMBO J., 38, e101430, https://doi.org/10.15252/embj.2018101430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schulz, A., Meyer, F., Dubrovska, A., and Borgmann, K. (2019) Cancer stem cells and radioresistance: DNA repair and beyond, Cancers (Basel), 11, 862, https://doi.org/10.3390/cancers11060862.

    Article  CAS  PubMed  Google Scholar 

  100. Gold, A., Eini, L., Nissim-Rafinia, M., Viner, R., Ezer, S., Erez, K., Aqaqe, N., Hanania, R., Milyavsky, M., Meshorer, E., and Goldberg, M. (2019) Spironolactone inhibits the growth of cancer stem cells by impairing DNA damage response, Oncogene, 38, 3103-3118, https://doi.org/10.1038/s41388-018-0654-9.

    Article  CAS  PubMed  Google Scholar 

  101. Shen, Y. A., Wang, C. Y., Chuang, H. Y., Hwang, J. J., Chi, W. H., Shu, C. H., Ho, C. Y., Li, W. Y., and Chen, Y. J. (2016) CD44 and CD24 coordinate the reprogramming of nasopharyngeal carcinoma cells towards a cancer stem cell phenotype through STAT3 activation, Oncotarget, 7, 58351-58366, https://doi.org/10.18632/oncotarget.11113.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ortiz-Montero, P., Liu-Bordes, W. Y., Londono-Vallejo, A., and Vernot, J. P. (2018) CD24 expression and stem-associated features define tumor cell heterogeneity and tumorigenic capacities in a model of carcinogenesis, Cancer Manag. Res., 10, 5767-5784, https://doi.org/10.2147/CMAR.S176654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Navas, T., Kinders, R. J., Lawrence, S. M., Ferry-Galow, K. V., Borgel, S., Hollingshead, M. G., Srivastava, A. K., Alcoser, S. Y., Makhlouf, H. R., Chuaqui, R., Wilsker, D. F., Konate, M. M., Miller, S. B., Voth, A. R., Chen, L., Vilimas, T., Subramanian, J., Rubinstein, L., Kummar, S., Chen, A. P., et al. (2020) Clinical evolution of epithelial-mesenchymal transition in human carcinomas, Cancer Res., 80, 304-318, https://doi.org/10.1158/0008-5472.CAN-18-3539.

    Article  CAS  PubMed  Google Scholar 

  104. Pacifico, F., Mellone, S., D'Incalci, M., Stornaiuolo, M., Leonardi, A., and Crescenzi, E. (2022) Trabectedin suppresses escape from therapy-induced senescence in tumor cells by interfering with glutamine metabolism, Biochem. Pharmacol., 202, 115159, https://doi.org/10.1016/j.bcp.2022.115159.

    Article  CAS  PubMed  Google Scholar 

  105. Wang, K., Cao, F., Fang, W., Hu, Y., Chen, Y., Ding, H., and Yu, G. (2013) Activation of SNAT1/SLC38A1 in human breast cancer: correlation with p-Akt overexpression, BMC Cancer, 13, 343, https://doi.org/10.1186/1471-2407-13-343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang, M., Liu, Y., Fang, W., Liu, K., Jiao, X., Wang, Z., Wang, J., and Zang, Y. S. (2017) Increased SNAT1 is a marker of human osteosarcoma and potential therapeutic target, Oncotarget, 8, 78930-78939, https://doi.org/10.18632/oncotarget.20693.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Bohme-Schafer, I., Lorentz, S., and Bosserhoff, A. K. (2022) Role of amino acid transporter SNAT1/SLC38A1 in human melanoma, Cancers (Basel), 14, 2151, https://doi.org/10.3390/cancers14092151.

    Article  CAS  PubMed  Google Scholar 

  108. Shishkin, S. S., Eremina, L. S., Kovalev, L. I., and Kovaleva, M. A. (2013) AGR2, ERp57/GRP58, and some other human protein disulfide isomerases, Biochemistry (Moscow), 78, 1415-1430, https://doi.org/10.1134/S000629791313004X.

    Article  CAS  PubMed  Google Scholar 

  109. Maarouf, A., Boissard, A., Henry, C., Leman, G., Coqueret, O., Guette, C., and Lelievre, E. (2022) Anterior gradient protein 2 is a marker of tumor aggressiveness in breast cancer and favors chemotherapyinduced senescence escape, Int. J. Oncol., 60, 5, https://doi.org/10.3892/ijo.2021.5295.

    Article  CAS  PubMed  Google Scholar 

  110. Hrstka, R., Brychtova, V., Fabian, P., Vojtesek, B., and Svoboda, M. (2013) AGR2 predicts tamoxifen resistance in postmenopausal breast cancer patients, Dis. Markers, 35, 207-212, https://doi.org/10.1155/2013/761537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li, Z., Zhu, Q., Hu, L., Chen, H., Wu, Z., and Li, D. (2015) Anterior gradient 2 is a binding stabilizer of hypoxia inducible factor-1alpha that enhances CoCl2-induced doxorubicin resistance in breast cancer cells, Cancer Sci., 106, 1041-1049, https://doi.org/10.1111/cas.12714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bolesta, E., Pfannenstiel, L. W., Demelash, A., Lesniewski, M. L., Tobin, M., Schlanger, S. E., Nallar, S. C., Papadimitriou, J. C., Kalvakolanu, D. V., and Gastman, B. R. (2012) Inhibition of Mcl-1 promotes senescence in cancer cells: implications for preventing tumor growth and chemotherapy resistance, Mol. Cell Biol., 32, 1879-1892, https://doi.org/10.1128/MCB.06214-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Crescenzi, E., Palumbo, G., and Brady, H. J. (2003) Bcl-2 activates a programme of premature senescence in human carcinoma cells, Biochem. J., 375, 263-274, https://doi.org/10.1042/BJ20030868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shor, B., Wu, J., Shakey, Q., Toral-Barza, L., Shi, C., Follettie, M., and Yu, K. (2010) Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells, J. Biol. Chem., 285, 15380-15392, https://doi.org/10.1074/jbc.M109.071639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kitada, K., Pu, F., and Toi, M. (2019) Occurrence of senescence-escaping cells in doxorubicin-induced senescence is enhanced by PD0332991, a cyclin-dependent kinase 4/6 inhibitor, in colon cancer HCT116 cells, Oncol. Lett., 17, 1153-1159, https://doi.org/10.3892/ol.2018.9657.

    Article  CAS  PubMed  Google Scholar 

  116. Wang, Q., Wu, P. C., Roberson, R. S., Luk, B. V., Ivanova, I., Chu, E., and Wu, D. Y. (2011) Survivin and escaping in therapy-induced cellular senescence, Int. J. Cancer, 128, 1546-1558, https://doi.org/10.1002/ijc.25482.

    Article  CAS  PubMed  Google Scholar 

  117. Han, T. L., Sha, H., Ji, J., Li, Y. T., Wu, D. S., Lin, H., Hu, B., and Jiang, Z. X. (2021) Depletion of Survivin suppresses docetaxel-induced apoptosis in HeLa cells by facilitating mitotic slippage, Sci. Rep., 11, 2283, https://doi.org/10.1038/s41598-021-81563-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zaffaroni, N., Pennati, M., and Daidone, M. G. (2005) Survivin as a target for new anticancer interventions, J. Cell Mol. Med., 9, 360-372, https://doi.org/10.1111/j.1582-4934.2005.tb00361.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Le Duff, M., Gouju, J., Jonchere, B., Guillon, J., Toutain, B., Boissard, A., Henry, C., Guette, C., Lelievre, E., and Coqueret, O. (2018) Regulation of senescence escape by the cdk4-EZH2-AP2M1 pathway in response to chemotherapy, Cell Death Dis., 9, 199, https://doi.org/10.1038/s41419-017-0209-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Iannetti, A., Ledoux, A. C., Tudhope, S. J., Sellier, H., Zhao, B., Mowla, S., Moore, A., Hummerich, H., Gewurz, B. E., Cockell, S. J., Jat, P. S., Willmore, E., and Perkins, N. D. (2014) Regulation of p53 and Rb links the alternative NF-kappaB pathway to EZH2 expression and cell senescence, PLoS Genet., 10, e1004642, https://doi.org/10.1371/journal.pgen.1004642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Erokhin, M., Chetverina, O., Gyorffy, B., Tatarskiy, V. V., Mogila, V., Shtil, A. A., Roninson, I. B., Moreaux, J., Georgiev, P., Cavalli, G., and Chetverina, D. (2021) Clinical correlations of polycomb repressive complex 2 in different tumor types, Cancers (Basel), 13, 3155, https://doi.org/10.3390/cancers13133155.

    Article  CAS  PubMed  Google Scholar 

  122. Chien, Y., Scuoppo, C., Wang, X., Fang, X., Balgley, B., Bolden, J. E., Premsrirut, P., Luo, W., Chicas, A., Lee, C. S., Kogan, S. C., and Lowe, S. W. (2011) Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity, Genes Dev., 25, 2125-2136, https://doi.org/10.1101/gad.17276711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Salunkhe, S., Mishra, S. V., Nair, J., Shah, S., Gardi, N., Thorat, R., Sarkar, D., Rajendra, J., Kaur, E., and Dutt, S. (2021) Nuclear localization of p65 reverses therapy-induced senescence, J. Cell Sci., 134, jcs253203, https://doi.org/10.1242/jcs.253203.

    Article  CAS  PubMed  Google Scholar 

  124. Wang, C., Long, Q., Fu, Q., Xu, Q., Fu, D., Li, Y., Gao, L., Guo, J., Zhang, X., Lam, E. W., Campisi, J., and Sun, Y. (2022) Targeting epiregulin in the treatment-damaged tumor microenvironment restrains therapeutic resistance, Oncogene, 41, 4941-4959, https://doi.org/10.1038/s41388-022-02476-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Czabotar, P. E., Lessene, G., Strasser, A., and Adams, J. M. (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy, Nat. Rev. Mol. Cell Biol., 15, 49-63, https://doi.org/10.1038/nrm3722.

    Article  CAS  PubMed  Google Scholar 

  126. Tse, C., Shoemaker, A. R., Adickes, J., Anderson, M. G., Chen, J., Jin, S., Johnson, E. F., Marsh, K. C., Mitten, M. J., Nimmer, P., Roberts, L., Tahir, S. K., Xiao, Y., Yang, X., Zhang, H., Fesik, S., Rosenberg, S. H., and Elmore, S. W. (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor, Cancer Res., 68, 3421-3428, https://doi.org/10.1158/0008-5472.CAN-07-5836.

    Article  CAS  PubMed  Google Scholar 

  127. Laberge, R. M., Sun, Y., Orjalo, A. V., Patil, C. K., Freund, A., Zhou, L., Curran, S. C., Davalos, A. R., Wilson-Edell, K. A., Liu, S., Limbad, C., Demaria, M., Li, P., Hubbard, G. B., Ikeno, Y., Javors, M., Desprez, P. Y., Benz, C. C., Kapahi, P., Nelson, P. S., et al. (2015) MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation, Nat. Cell Biol., 17, 1049-1061, https://doi.org/10.1038/ncb3195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ovadya, Y., and Krizhanovsky, V. (2018) Strategies targeting cellular senescence, J. Clin. Invest., 128, 1247-1254, https://doi.org/10.1172/JCI95149.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Wyld, L., Bellantuono, I., Tchkonia, T., Morgan, J., Turner, O., Foss, F., George, J., Danson, S., and Kirkland, J. L. (2020) Senescence and cancer: a review of clinical implications of senescence and senotherapies, Cancers (Basel), 12, 2134, https://doi.org/10.3390/cancers12082134.

    Article  CAS  PubMed  Google Scholar 

  130. Zhu, Y., Tchkonia, T., Fuhrmann-Stroissnigg, H., Dai, H. M., Ling, Y. Y., Stout, M. B., Pirtskhalava, T., Giorgadze, N., Johnson, K. O., Giles, C. B., Wren, J. D., Niedernhofer, L. J., Robbins, P. D., and Kirkland, J. L. (2016) Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors, Aging Cell, 15, 428-435, https://doi.org/10.1111/acel.12445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Grezella, C., Fernandez-Rebollo, E., Franzen, J., Ventura Ferreira, M. S., Beier, F., and Wagner, W. (2018) Effects of senolytic drugs on human mesenchymal stromal cells, Stem Cell Res. Ther., 9, 108, https://doi.org/10.1186/s13287-018-0857-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., Palmer, A. K., Ikeno, Y., Hubbard, G. B., Lenburg, M., O’Hara, S. P., LaRusso, N. F., Miller, J. D., Roos, C. M., Verzosa, G. C., LeBrasseur, N. K., Wren, J. D., Farr, J. N., Khosla, S., Stout, M. B., et al. (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs, Aging Cell, 14, 644-658, https://doi.org/10.1111/acel.12344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sharma, A. K., Roberts, R. L., Benson, R. D., Jr., Pierce, J. L., Yu, K., Hamrick, M. W., and McGee-Lawrence, M. E. (2020) The senolytic drug navitoclax (ABT-263) causes trabecular bone loss and impaired osteoprogenitor function in aged mice, Front. Cell Dev. Biol., 8, 354, https://doi.org/10.3389/fcell.2020.00354.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Zhu, Y., Doornebal, E. J., Pirtskhalava, T., Giorgadze, N., Wentworth, M., Fuhrmann-Stroissnigg, H., Niedernhofer, L. J., Robbins, P. D., Tchkonia, T., and Kirkland, J. L. (2017) New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463, Aging (Albany NY), 9, 955-963, https://doi.org/10.18632/aging.101202.

    Article  PubMed  Google Scholar 

  135. Yousefzadeh, M. J., Zhu, Y., McGowan, S. J., Angelini, L., Fuhrmann-Stroissnigg, H., Xu, M., Ling, Y. Y., Melos, K. I., Pirtskhalava, T., Inman, C. L., McGuckian, C., Wade, E. A., Kato, J. I., Grassi, D., Wentworth, M., Burd, C. E., Arriaga, E. A., Ladiges, W. L., Tchkonia, T., Kirkland, J. L., et al. (2018) Fisetin is a senotherapeutic that extends health and lifespan, EBioMedicine, 36, 18-28, https://doi.org/10.1016/j.ebiom.2018.09.015.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Li, J., Gong, X., Jiang, R., Lin, D., Zhou, T., Zhang, A., Li, H., Zhang, X., Wan, J., Kuang, G., and Li, H. (2018) Fisetin inhibited growth and metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via PTEN/Akt/GSK3beta signal pathway, Front. Pharmacol., 9, 772, https://doi.org/10.3389/fphar.2018.00772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Youns, M., and Abdel Halim Hegazy, W. (2017) The natural flavonoid fisetin inhibits cellular proliferation of hepatic, colorectal, and pancreatic cancer cells through modulation of multiple signaling pathways, PLoS One, 12, e0169335, https://doi.org/10.1371/journal.pone.0169335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Khan, N., Jajeh, F., Eberhardt, E. L., Miller, D. D., Albrecht, D. M., Van Doorn, R., Hruby, M. D., Maresh, M. E., Clipson, L., Mukhtar, H., and Halberg, R. B. (2019) Fisetin and 5-fluorouracil: Effective combination for PIK3CA-mutant colorectal cancer, Int. J. Cancer, 145, 3022-3032, https://doi.org/10.1002/ijc.32367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhuo, W., Zhang, L., Zhu, Y., Zhu, B., and Chen, Z. (2015) Fisetin, a dietary bioflavonoid, reverses acquired Cisplatin-resistance of lung adenocarcinoma cells through MAPK/Survivin/Caspase pathway, Am. J. Transl. Res., 7, 2045-2052.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Porter, D. C., Farmaki, E., Altilia, S., Schools, G. P., West, D. K., Chen, M., Chang, B. D., Puzyrev, A. T., Lim, C. U., Rokow-Kittell, R., Friedhoff, L. T., Papavassiliou, A. G., Kalurupalle, S., Hurteau, G., Shi, J., Baran, P. S., Gyorffy, B., Wentland, M. P., Broude, E. V., Kiaris, H., et al. (2012) Cyclin-dependent kinase 8 mediates chemotherapy-induced tumor-promoting paracrine activities, Proc. Natl. Acad. Sci. USA, 109, 13799-13804, https://doi.org/10.1073/pnas.1206906109.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Sharko, A. C., Lim, C. U., McDermott, M. S. J., Hennes, C., Philavong, K. P., Aiken, T., Tatarskiy, V. V., Roninson, I. B., and Broude, E. V. (2021) The inhibition of CDK8/19 mediator kinases prevents the development of resistance to EGFR-targeting drugs, Cells, 10, 144, https://doi.org/10.3390/cells10010144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sanchez-Diaz, L., Espinosa-Sanchez, A., Blanco, J. R., and Carnero, A. (2022) Senotherapeutics in cancer and HIV, Cells, 11, 1222, https://doi.org/10.3390/cells11071222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Serra, F., Lapidari, P., Quaquarini, E., Tagliaferri, B., Sottotetti, F., and Palumbo, R. (2019) Palbociclib in metastatic breast cancer: current evidence and real-life data, Drugs Context, 8, 212579, https://doi.org/10.7573/dic.212579.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Galardi, F., De Luca, F., Biagioni, C., Migliaccio, I., Curigliano, G., Minisini, A. M., Bonechi, M., Moretti, E., Risi, E., McCartney, A., Benelli, M., Romagnoli, D., Cappadona, S., Gabellini, S., Guarducci, C., Conti, V., Biganzoli, L., Di Leo, A., and Malorni, L. (2021) Circulating tumor cells and palbociclib treatment in patients with ER-positive, HER2-negative advanced breast cancer: results from a translational sub-study of the TREnd trial, Breast Cancer Res., 23, 38, https://doi.org/10.1186/s13058-021-01415-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Jost, T., Heinzerling, L., Fietkau, R., Hecht, M., and Distel, L. V. (2021) Palbociclib induces senescence in melanoma and breast cancer cells and leads to additive growth arrest in combination with irradiation, Front. Oncol., 11, 740002, https://doi.org/10.3389/fonc.2021.740002.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Bi, H., Shang, J., Zou, X., Xu, J., and Han, Y. (2021) Palbociclib induces cell senescence and apoptosis of gastric cancer cells by inhibiting the Notch pathway, Oncol. Lett., 22, 603, https://doi.org/10.3892/ol.2021.12864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Rubinsztein, D. C., Codogno, P., and Levine, B. (2012) Autophagy modulation as a potential therapeutic target for diverse diseases, Nat. Rev. Drug Discov., 11, 709-730, https://doi.org/10.1038/nrd3802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lee, H. O., Mustafa, A., Hudes, G. R., and Kruger, W. D. (2015) Hydroxychloroquine destabilizes phospho-S6 in human renal carcinoma cells, PLoS One, 10, e0131464, https://doi.org/10.1371/journal.pone.0131464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Harnicek, D., Kampmann, E., Lauber, K., Hennel, R., Cardoso Martins, A. S., Guo, Y., Belka, C., Mortl, S., Gallmeier, E., Kanaar, R., Mansmann, U., Hucl, T., Lindner, L. H., Hiddemann, W., and Issels, R. D. (2016) Hyperthermia adds to trabectedin effectiveness and thermal enhancement is associated with BRCA2 degradation and impairment of DNA homologous recombination repair, Int. J. Cancer, 139, 467-479, https://doi.org/10.1002/ijc.30070.

    Article  CAS  PubMed  Google Scholar 

  150. Camorani, S., Cerchia, L., Fedele, M., Erba, E., D’Incalci, M., and Crescenzi, E. (2018) Trabectedin modulates the senescence-associated secretory phenotype and promotes cell death in senescent tumor cells by targeting NF-kappaB, Oncotarget, 9, 19929-19944, https://doi.org/10.18632/oncotarget.24961.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (grant no. 22-24-00212).

Author information

Authors and Affiliations

Authors

Contributions

Zamkova, M. A. – writing and editing the text; Persiyantseva, N. A., Tatarskiy, V. V. – editing the text; Shtil, A. A. – conceptualization, writing, and final editing.

Corresponding author

Correspondence to Maria A. Zamkova.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamkova, M.A., Persiyantseva, N.A., Tatarskiy, V.V. et al. Therapy-Induced Tumor Cell Senescence: Mechanisms and Circumvention. Biochemistry Moscow 88, 86–104 (2023). https://doi.org/10.1134/S000629792301008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792301008X

Keywords

Navigation