Skip to main content
Log in

An Assay for the Activity of Base Excision Repair Enzymes in Cellular Extracts Using Fluorescent DNA Probes

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Damaged DNA bases are removed by the base excision repair (BER) mechanism. This enzymatic process begins with the action of one of DNA glycosylases, which recognize damaged DNA bases and remove them by hydrolyzing N-glycosidic bonds with the formation of apurinic/apyrimidinic (AP) sites. Apurinic/apyrimidinic endonuclease 1 (APE1) hydrolyzes the phosphodiester bond on the 5′-side of the AP site with generation of the single-strand DNA break. A decrease in the functional activity of BER enzymes is associated with the increased risk of cardiovascular, neurodegenerative, and oncological diseases. In this work, we developed a fluorescence method for measuring the activity of key human DNA glycosylases and AP endonuclease in cell extracts. The efficacy of fluorescent DNA probes was tested using purified enzymes; the most efficient probes were tested in the enzymatic activity assays in the extracts of A549, MCF7, HeLa, WT-7, HEK293T, and HKC8 cells. The activity of enzymes responsible for the repair of AP sites and removal of uracil and 5,6-dihydrouracil residues was higher in cancer cell lines as compared to the normal HKC8 human kidney cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1.
Table 2.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

AAG:

alkyladenine DNA glycosylase

APE1:

human AP endonuclease 1

AP site:

apurinic/apyrimidinic site

BHQ:

black hole quencher

DHU:

5,6-dihydrouridine

εA:

1,N6-ethenoadenosine

FAM:

6-carboxyfluorescein

FRET:

Förster resonance energy transfer

F:

(2R,3S)-2-(hydroxymethyl)-3-hydroxytetrahydrofuran residue

MBD4:

methyl-CpG-binding domain 4

NEIL1:

human endonuclease VIII

NTHL1:

human endonuclease III

OGG1:

8-oxoguanine DNA glycosylase

oxoG:

8-oxoguanosine

TDG:

thymine DNA glycosylase

UDG:

uracil-DNA glycosylase

REFERENCES

  1. Wallace, S. S. (2002) Biological consequences of free radical-damaged DNA bases, Free Radic. Biol. Med., 33, 1-14, doi: 10.1016/s0891-5849(02)00827-4.

    Article  CAS  PubMed  Google Scholar 

  2. Boiteux, S., and Guillet, M. (2004) Abasic sites in DNA, repair and biological consequences in Saccharomyces cerevisiae, DNA Repair, 3, 1-12, doi: 10.1016/j.dnarep.2003.10.002.

    Article  CAS  PubMed  Google Scholar 

  3. Van Loon, B., Markkanen, E., and Hubscher, U. (2010) Oxygen as a friend and enemy: how to combat the mutational potential of 8-oxo-guanine, DNA Repair (Amst), 9, 604-616, doi: 10.1016/j.dnarep.2010.03.004.

    Article  CAS  Google Scholar 

  4. Kuznetsova, A. A., Knorre, D. G., and Fedorova, O. S. (2009) Oxidation of DNA and its components with reactive oxygen species, Russ. Chem. Rev., 78, 659-678, doi: 10.1070/Rc2009v078n07abeh004038.

    Article  CAS  Google Scholar 

  5. Nakamura, J., Walker, V. E., Upton, P. B., Chiang, S. Y., Kow, Y. W., and Swenberg, J. A. (1998) Highly sensitive apurinic/apyrimidinic site assay can detect spontaneous and chemically induced depurination under physiological conditions, Cancer Res., 58, 222-225.

    CAS  PubMed  Google Scholar 

  6. Frederico, L. A., Kunkel, T. A., and Shaw, B. R. (1990) A sensitive genetic assay for the detection of cytosine deamination, determination of rate constants and the activation energy, Biochemistry, 29, 2532-2537.

    Article  CAS  Google Scholar 

  7. Burcham, P. C. (1999) Internal hazards, baseline DNA damage by endogenous products of normal metabolism, Mutat. Res., 443, 11-36.

    Article  CAS  Google Scholar 

  8. Evans, M. D., Dizdaroglu, M., and Cooke, M. S. (2004) Oxidative DNA damage and disease, induction, repair and significance, Mutat. Res., 567, 1-61.

    Article  CAS  Google Scholar 

  9. Leandro, G. S., Sykora, P., and Bohr, V. A. (2015) The impact of base excision DNA repair in age-related neurodegenerative diseases, Mutat. Res. Mol. Mech. Mutagen., 776, 31-39, doi: 10.1016/j.mrfmmm.2014.12.011.

    Article  CAS  Google Scholar 

  10. Coppede, F., and Migliore, L. (2015) DNA damage in neurodegenerative diseases, Mutat. Res. Mol. Mech. Mutagen., 776, 84-97, doi: 10.1016/j.mrfmmm.2014.11.010.

    Article  CAS  Google Scholar 

  11. Helleday, T., Petermann, E., Lundin, C., Hodgson, B., and Sharma, R. A. (2008) DNA repair pathways as targets for cancer therapy, Nat. Rev. Cancer, 8, 193-204, doi: 10.1038/nrc2342.

    Article  CAS  PubMed  Google Scholar 

  12. Dietlein, F., Thelen, L., and Reinhardt, H. C. (2014) Cancer-specific defects in DNA repair pathways as targets for personalized therapeutic approaches, Trends Genet., 30, 326-339, doi: 10.1016/j.tig.2014.06.003.

    Article  CAS  PubMed  Google Scholar 

  13. Trushina, E., and McMurray, C. T. (2007) Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases, Neuroscience, 145, 1233-1248, doi: 10.1016/j.neuroscience.2006.10.056.

    Article  CAS  PubMed  Google Scholar 

  14. Cooke, M. S., Evans, M. D., Dizdaroglu, M., and Lunec, J. (2003) Oxidative DNA damage, mechanisms, mutation, and disease, FASEB J., 17, 1195-1214.

    Article  CAS  Google Scholar 

  15. Gros, L., Saparbaev, M. K., and Laval, J. (2002) Enzymology of the repair of free radicals-induced DNA damage, Oncogene, 21, 8905-8925.

    Article  CAS  Google Scholar 

  16. Zharkov, D. O. (2008) Base excision DNA repair, Cell. Mol. Life Sci., 65, 1544-1565, doi: 10.1007/s00018-008-7543-2.

    Article  CAS  PubMed  Google Scholar 

  17. Klungland, A., Rosewell, I., Hollenbach, S., Larsen, E., Daly, G., Epe, B., Seeberg, E., Lindahl, T., and Barnes, D. E. (1999) Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage, Proc. Natl. Acad. Sci. USA, 96, 13300-13305.

    Article  CAS  Google Scholar 

  18. Parsons, J. L., and Elder, R. H. (2003) DNA N-glycosylase deficient mice, a tale of redundancy, Mutat. Res., 531, 165-175.

    Article  CAS  Google Scholar 

  19. Nilsen, H., Rosewell, I., Robins, P., Skjelbred, C. F., Andersen, S., Slupphaug, G., Daly, G., Krokan, H. E., Lindahl, T., and Barnes, D. E. (2000) Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication, Mol. Cell, 5, 1059-1065.

    Article  CAS  Google Scholar 

  20. Fung, H., and Demple, B. (2005) A vital role for Ape1/Ref1 protein in repairing spontaneous DNA damage in human cells, Mol. Cell, 17, 463-470, doi: 10.1016/j.molcel.2004.12.029.

    Article  CAS  PubMed  Google Scholar 

  21. Xanthoudakis, S., Smeyne, R. J., Wallace, J. D., and Curran, T. (1996) The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice, Proc. Natl. Acad. Sci. USA, 93, 8919-8923, doi: 10.1073/Pnas.93.17.8919.

    Article  CAS  PubMed  Google Scholar 

  22. Unnikrishnan, A., Raffoul, J. J., Patel, H. V., Prychitko, T. M., Anyangwe, N., Meira, L. B., Friedberg, E. C., Cabelof, D. C., and Heydari, A. R. (2009) Oxidative stress alters base excision repair pathway and increases apoptotic response in apurinic/apyrimidinic endonuclease 1/redox factor-1 haploinsufficient mice, Free Radic. Biol. Med., 46, 1488-1499, doi: 10.1016/j.freeradbiomed.2009.02.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gines, G., Saint-Pierre, C., and Gasparutto, D. (2014) On-bead fluorescent DNA nanoprobes to analyze base excision repair activities, Anal. Chim. Acta, 812, 168-175, doi: 10.1016/j.aca.2013.12.038.

    Article  CAS  PubMed  Google Scholar 

  24. Chaim, I. A., Nagel, Z. D., Jordan, J. J., Mazzucato, P., Ngo, L. P., and Samson, L. D. (2017) In vivo measurements of interindividual differences in DNA glycosylases and APE1 activities, Proc. Natl. Acad. Sci. USA, 114, e10379-e10388, doi: 10.1073/pnas.1712032114.

    Article  CAS  PubMed  Google Scholar 

  25. Maksimenko, A., Ishchenko, A. A., Sanz, G., Laval, J., Elder, R. H., and Saparbaev, M. K. (2004) A molecular beacon assay for measuring base excision repair activities, Biochem. Biophys. Res. Commun., 319, 240-246, doi: 10.1016/j.bbrc.2004.04.179.

    Article  CAS  PubMed  Google Scholar 

  26. Lebedeva, N. A., Anarbaev, R. O., Kupryushkin, M. S., Rechkunova, N. I., Pyshnyi, D. V., Stetsenko, D. A., and Lavrik, O. I. (2015) Design of a new fluorescent oligonucleotide-based assay for a highly specific real-time detection of apurinic/apyrimidinic site cleavage by tyrosyl-DNA phosphodiesterase 1, Bioconjug. Chem., 26, 2046-2053, doi: 10.1021/acs.bioconjchem.5b00451.

    Article  CAS  PubMed  Google Scholar 

  27. Thomson, G. J., Hamilton, N. S., Hopkins, G. V., Waddell, I. D., Watson, A. J., and Ogilvie, D. J. (2013) A fluorescence-based assay for the apurinic/apyrimidinic-site cleavage activity of human tyrosyl-DNA phosphodiesterase 1, Anal. Biochem., 440, 1-5, doi: 10.1016/j.ab.2013.05.003.

    Article  CAS  PubMed  Google Scholar 

  28. Li, J., Svilar, D., McClellan, S., Kim, J.-H., Ahn, E. E., Vens, C., Wilson, D. M., and Sobol, R. W. (2018) DNA repair molecular beacon assay, a platform for real-time functional analysis of cellular DNA repair capacity, Oncotarget, 9, 31719-31743, doi: 10.18632/oncotarget.25859.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wilson, D. L., and Kool, E. T. (2018) Fluorescent probes of DNA repair, ACS Chem. Biol., 13, 1721-1733, doi: 10.1021/acschembio.7b00919.

    Article  CAS  PubMed  Google Scholar 

  30. Hu, J., Liu, M.-H., Li, Y., Tang, B., and Zhang, C.-Y. (2018) Simultaneous sensitive detection of multiple DNA glycosylases from lung cancer cells at the single-molecule level, Chem. Sci., 9, 712-720, doi: 10.1039/c7sc04296e.

    Article  CAS  PubMed  Google Scholar 

  31. Svilar, D., Vens, C., and Sobol, R. W. (2012) Quantitative, real-time analysis of base excision repair activity in cell lysates utilizing lesion-specific molecular beacons, J. Vis. Exp., 66, e4168, doi: 10.3791/4168.

    Article  CAS  Google Scholar 

  32. Healing, E., Charlier, C. F., Meira, L. B., and Elliott, R. M. (2019) A panel of colorimetric assays to measure enzymatic activity in the base excision DNA repair pathway, Nucleic Acids Res., 47, e61, doi: 10.1093/nar/gkz171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, Y., Li, C., Tang, B., and Zhang, C. (2017) Homogeneously sensitive detection of multiple DNA glycosylases with intrinsically fluorescent nucleotides, Anal. Chem., 89, 7684-7692, doi: 10.1021/acs.analchem.7b01655.

    Article  CAS  PubMed  Google Scholar 

  34. Liu, G., He, W., and Liu, C. (2019) Sensitive detection of uracil-DNA glycosylase (UDG) activity based on terminal deoxynucleotidyl transferase-assisted formation of fluorescent copper nanoclusters (CuNCs), Talanta, 195, 320-326, doi: 10.1016/j.talanta.2018.11.083.

    Article  CAS  PubMed  Google Scholar 

  35. Du, Y.-C., Jiang, H.-X., Huo, Y.-F., Han, G.-M., and Kong, D.-M. (2016) Optimization of strand displacement amplification-sensitized G-quadruplex DNAzyme-based sensing system and its application in activity detection of uracil-DNA glycosylase, Biosens. Bioelectron., 77, 971-977, doi: 10.1016/j.bios.2015.10.080.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, L., Zhao, J., Jiang, J., and Yu, R. (2012) A target-activated autocatalytic DNAzyme amplification strategy for the assay of base excision repair enzyme activity, Chem. Commun., 48, 8820-8822, doi: 10.1039/c2cc34531e.

    Article  CAS  Google Scholar 

  37. Wang, L., Ren, M., Zhang, Q., Tang, B., and Zhang, C. (2017) Excision repair-initiated enzyme-assisted bicyclic cascade signal amplification for ultrasensitive detection of uracil-DNA glycosylase, Anal. Chem., 89, 4488-4494, doi: 10.1021/acs.analchem.6b04673.

    Article  CAS  PubMed  Google Scholar 

  38. Kladova, O. A., Bazlekowa-Karaban, M., Baconnais, S., Pietrement, O., Ishchenko, A. A., Matkarimov, B. T., Iakovlev, D. A., Vasenko, A., Fedorova, O. S., Le Cam, E., Tudek, B., Kuznetsov, N. A., and Saparbaev, M. (2018) The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation, DNA Repair (Amst), 64, 10-25, doi: 10.1016/j.dnarep.2018.02.001.

    Article  CAS  Google Scholar 

  39. Kuznetsova, A. A., Kuznetsov, N. A., Ishchenko, A. A., Saparbaev, M. K., and Fedorova, O. S. (2014) Pre-steady-state fluorescence analysis of damaged DNA transfer from human DNA glycosylases to AP-endonuclease APE1, Biochim. Biophys. Acta, 1840, 3042-3051, doi: 10.1016/j.bbagen.2014.07.016.

    Article  CAS  PubMed  Google Scholar 

  40. Waters, T. R., Gallinari, P., Jiricny, J., and Swann, P. F. (1999) Human thymine DNA glycosylase binds to apurinic sites in DNA but is displaced by human apurinic endonuclease 1, J. Biol. Chem., 274, 67-74.

    Article  CAS  Google Scholar 

  41. Xia, L., Zheng, L., Lee, H. W., Bates, S. E., Federico, L., Shen, B., and O’Connor, T. R. (2005) Human 3-methyladenine-DNA glycosylase. Effect of sequence context on excision, association with PCNA, and stimulation by AP-endonuclease, J. Mol. Biol., 346, 1259-1274, doi: 10.1016/j.jmb.2005.01.014.

    Article  CAS  PubMed  Google Scholar 

  42. Esadze, A., Rodriguez, G., Cravens, S. L., and Stivers, J. T. (2017) AP-endonuclease 1 accelerates turnover of human 8-oxoguanine DNA glycosylase by preventing retrograde binding to the abasic-site product, Biochemistry, 56, 1974-1986, doi: 10.1021/acs.biochem.7b00017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baldwin, M. R., and O’Brien, P. J. (2009) Human AP-endonuclease 1 stimulates multiple-turnover base excision by alkyladenine DNA glycosylase, Biochemistry, 48, 6022-6033, doi: 10.1021/bi900517y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miroshnikova, A. D., Kuznetsova, A. A., Vorobjev, Y. N., Kuznetsov, N. A., and Fedorova, O. S. (2016) Effects of mono- and divalent metal ions on DNA binding and catalysis of human apurinic/apyrimidinic endonuclease 1, Mol. BioSyst., 12, 1527-1539, doi: 10.1039/c6mb00128a.

    Article  CAS  PubMed  Google Scholar 

  45. Kuznetsov, N. A., Koval, V. V., and Fedorova, O. S. (2011) Mechanism of recognition and repair of damaged DNA by human 8-oxoguanine DNA glycosylase hOGG1, Biochemistry (Moscow), 76, 118-130, doi: 10.1134/S0006297911010123.

    Article  CAS  Google Scholar 

  46. Kladova, O. A., Kuznetsova, A. A., Fedorova, O. S., and Kuznetsov, N. A. (2017) Mutational and kinetic analysis of lesion recognition by Escherichia coli endonuclease VIII, Genes, 8, 1-13, doi: 10.3390/genes8050140.

    Article  CAS  Google Scholar 

  47. Kuznetsova, A. A., Iakovlev, D. A., Misovets, I. V., Ishchenko, A. A., Saparbaev, M. K., Kuznetsov, N. A., and Fedorova, O. S. (2017) Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1, Mol. BioSyst., 13, 2638-2649, doi: 10.1039/c7mb00457e.

    Article  CAS  PubMed  Google Scholar 

  48. Yakovlev, D. A., Kuznetsova, A. A., Fedorova, O. S., and Kuznetsov, N. A. (2017) Search for modified DNA sites with the human methyl-CpG-binding enzyme MBD4, Acta Naturae, 9, 88-98.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 18-14-00135, design of DNA probes and assays in cell lines; project no. 16-14-10038, measuring relative activities of purified MBD4 and TDG); Russian Ministry of Science and Education (project no. AAAA-A17-117020210022-4 for O.S.F. and N.A.K.); Ligue National Contre le Cancer “Equipe Labellisee”, Electricité de France (RB 2017 to M.S.); French National Research Agency (ANR-18-CE44-0008); and Foundation ARC (PJA-20181208015 to A.A.I.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. S. Fedorova or N. A. Kuznetsov.

Ethics declarations

This article does not contain studies with human participants or animals performed by any of the authors. The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kladova, O., Iakovlev, D., Groisman, R. et al. An Assay for the Activity of Base Excision Repair Enzymes in Cellular Extracts Using Fluorescent DNA Probes. Biochemistry Moscow 85, 480–489 (2020). https://doi.org/10.1134/S0006297920040082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920040082

Keywords

Navigation