Skip to main content
Log in

Comparative Analysis of Aggregation of Thermus thermophilus Ribosomal Protein bS1 and Its Stable Fragment

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Functionally important multidomain bacterial protein bS1 is the largest ribosomal protein of subunit 30S. It interacts with both mRNA and proteins and is prone to aggregation, although this process has not been studied in detail. Here, we obtained bacterial strains overproducing ribosomal bS1 protein from Thermus thermophilus and its stable fragment bS1(49) and purified these proteins. Using fluorescence spectroscopy, dynamic light scattering, and high-performance liquid chromatography combined with mass spectrometric analysis of products of protein limited proteolysis, we demonstrated that disordered regions at the N- and C-termini of bS1 can play a key role in the aggregation of this protein. The truncated fragment bS1(49) was less prone to aggregation compared to the full-size bS1. The revealed properties of the studied proteins can be used to obtain protein crystals for elucidating the structure of the bS1 stable fragment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bS1(49):

a fragment of Thermus thermophilus bS1 protein with a molecular mass of ∼49 kDa

CD:

circular dichroism

CSD:

cold shock domain

DLS:

dynamic light scattering

EM:

electron microscopy

HPLC/MS:

high-performance liquid chromatography/mass spectrometry

I320/I380 :

ratio of fluorescence intensities at 320 and 380 nm

m/z :

mass-to-charge ratio

References

  1. Chiti, F., and Dobson, C. M. (2006) Protein misfolding, functional amyloid, and human disease, Annu. Rev. Biochem., 75, 333–366.

    Article  CAS  PubMed  Google Scholar 

  2. Dovidchenko, N. V., and Galzitskaya, O. V. (2015) Computational approaches to identification of aggregation sites and the mechanism of amyloid growth, Adv. Exp. Med. Biol., 855, 213–239.

    Article  CAS  PubMed  Google Scholar 

  3. Galzitskaya, O. (2019) New mechanism of amyloid fibril formation, Curr. Protein Pept. Sci., 20, 630–640.

    Article  CAS  PubMed  Google Scholar 

  4. Solovyov, K. V., Gasteva, A. A., Egorov, V. V., Aleinikova, T. D., Sirotkin, A. K., Shvartsman, A. L., and Shavlovsky, M. M. (2006) Role of the C-terminal fragment of human transthyretin in abnormal fibrillogenesis, Biochemistry (Moscow), 71, 543–549.

    Article  CAS  Google Scholar 

  5. Pilla, S. P., Thomas, A., and Bahadur, R. P. (2019) Dissecting macromolecular recognition sites in ribosome: implication to its self-assembly, RNA Biol., 16, 1300–1312.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pechmann, S., Willmund, F., and Frydman, J. (2013) The ribosome as a hub for protein quality control, Mol. Cell, 49, 411–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chaillou, T. (1985) Ribosome specialization and its potential role in the control of protein translation and skeletal muscle size, J. Appl. Physiol., 127, 599–607.

    Article  CAS  Google Scholar 

  8. Schieber, G. L., and O’Brien, T. W. (1982) Extraction of proteins from the large subunit of bovine mitochondrial ribosomes under nondenaturing conditions, J. Biol. Chem., 257, 8781–8787.

    CAS  PubMed  Google Scholar 

  9. Wittmann, H. G., Stofflet, G., Hindennach, I., Kurland, C. G., Birge, E. A., Randall-Hazelbauer, L., Nomura, M., Kaltschmidt, E., Mizushima, S., Traut, R. R., and Bickle, T. A. (1971) Correlation of 30S ribosomal proteins of Escherichia coli isolated in different laboratories, Mol. Gen. Genet., 111, 327–330.

    Article  CAS  PubMed  Google Scholar 

  10. Ban, N., Beckmann, R., Cate, J. H., Dinman, J. D., Dragon, F., Ellis, S. R., Lafontaine, D. L., Lindahl, L., Liljas, A., Lipton, J. M., McAlear, M. A., Moore, P. B., Noller, H. F., Ortega, J., Panse, V. G., Ramakrishnan, V., Spahn, C. M., Steitz, T. A., Tchorzewski, M., Tollervey, D., Warren, A. J., Williamson, J. R., Wilson, D., Yonath, A., and Yusupov, M. (2014) A new system for naming ribosomal proteins, Curr. Opin. Struct. Biol., 24, 165–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Giri, L., and Subramanian, A. R. (1977) Hydrodynamic properties of protein S1 from Escherichia coli ribosome, FEBS Lett., 81, 199–203.

    Article  CAS  PubMed  Google Scholar 

  12. Laughrea, M., and Moore, P. B. (1977) Physical properties of ribosomal protein S1 and its interaction with the 30S ribosomal subunit of Escherichia coli, J. Mol. Biol., 112, 399–421.

    Article  CAS  PubMed  Google Scholar 

  13. Tedin, K., Resch, A., and Blasi, U. (1997) Requirements for ribosomal protein S1 for translation initiation of mRNAs with and without a 5′ leader sequence, Mol. Microbiol., 25, 189–199.

    Article  CAS  PubMed  Google Scholar 

  14. Wower, I. K. (2000) Binding and cross-linking of tmRNA to ribosomal protein S1, on and off the Escherichia coli ribosome, EMBO J., 19, 6612–6621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deryusheva, E. I., Machulin, A. V., Selivanova, O. M., and Galzitskaya, O. V. (2017) Taxonomic distribution, repeats, and functions of the S1 domain-containing proteins as members of the OB-fold family, Proteins, 85, 602–613.

    Article  CAS  PubMed  Google Scholar 

  16. Bycroft, M., Hubbard, T. J. P., Proctor, M., Freund, S. M. V., and Murzin, A. G. (1997) The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold, Cell, 88, 235–242.

    Article  CAS  PubMed  Google Scholar 

  17. Mihailovich, M., Militti, C., Gabaldyn, T., and Gebauer, F. (2010) Eukaryotic cold shock domain proteins: highly versatile regulators of gene expression, BioEssays, 32, 109–118.

    Article  CAS  PubMed  Google Scholar 

  18. Machulin, A. V., Deryusheva, E. I., Selivanova, O. M., and Galzitskaya, O. V. (2019) The number of domains in the ribosomal protein S1 as a hallmark of the phylogenetic grouping of bacteria, PLoS One, 14, e0221370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Deriusheva, E. I., Machulin, A. V., Selivanova, O. M., and Serdiuk, I. N. (2010) Family of ribosomal proteins S1 contains unique conservative domain, Mol. Biol. (Moscow), 44, 728–734.

    Article  CAS  Google Scholar 

  20. Machulin, A., Deryusheva, E., Lobanov, M., and Galzitskaya, O. (2019) Repeats in S1 proteins: flexibility and tendency for intrinsic disorder, Int. J. Mol. Sci., 20, 2377.

    Article  PubMed Central  CAS  Google Scholar 

  21. Subramanian, A. R. (1983) Structure and functions of ribosomal protein S1, Prog. Nucleic Acid Res. Mol. Biol., 28, 101–142.

    Article  CAS  PubMed  Google Scholar 

  22. Sengupta, J., Agrawal, R. K., and Frank, J. (2001) Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA, Proc. Natl. Acad. Sci. USA, 98, 11991–11996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boni, I. V., Artamonova, V. S., and Dreyfus, M. (2000) The last RNA-binding repeat of the Escherichia coli ribosomal protein S1 is specifically involved in autogenous control, J. Bacteriol., 182, 5872–5879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salah, P., Bisaglia, M., Aliprandi, P., Uzan, M., Sizun, C., and Bontems, F. (2009) Probing the relationship between gram-negative and gram-positive S1 proteins by sequence analysis, Nucleic Acids Res., 37, 5578–5588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Loveland, A. B., and Korostelev, A. A. (2018) Structural dynamics of protein S1 on the 70S ribosome visualized by ensemble cryo-EM, Methods, 137, 55–66.

    Article  CAS  PubMed  Google Scholar 

  26. Cava, F., Hidalgo, A., and Berenguer, J. (2009) Thermus thermophilus as biological model, Extremophiles, 13, 213–231.

    Article  CAS  PubMed  Google Scholar 

  27. Sedelnikova, S. E., Agalarov, S. C., Garber, M. B., and Yusupov, M. M. (1987) Proteins of the Thermus thermophilus ribosome. Purification of several individual proteins and crystallization of protein TL7, FEBS Lett., 220, 227–230.

    Article  CAS  Google Scholar 

  28. Shiryaev, V. M., Selivanova, O. M., Hartsch, T., Nazimov, I. V., and Spirin, A. S. (2002) Ribosomal protein S1 from Thermus thermophilus: its detection, identification and overproduction, FEBS Lett., 525, 88–92.

    Article  CAS  PubMed  Google Scholar 

  29. Selivanova, O. M., Shiryaev, V. M., Tiktopulo, E. I., Potekhin, S. A., and Spirin, A. S. (2003) Compact globular structure of Thermus thermophilus ribosomal protein S1 in solution: sedimentation and calorimetric study, J. Biol. Chem., 278, 36311–36314.

    Article  CAS  PubMed  Google Scholar 

  30. Selivanova, O. M., Fedorova, Y. Y., and Serduyk, I. N. (2007) Proteolysis of ribosomal protein S1 from Escherichia coli and Thermus thermophilus leads to formation of two different fragments, Biochemistry (Moscow), 72, 1225–1232.

    Article  CAS  Google Scholar 

  31. Timchenko, A. A., Shiriaev, V. M., Fedorova, Yu. Yu., Kikhara, H., Kimura, K., Willumeit, R., Garamus, V. M., and Selivanova, O. M. (2007) Conformation of the ribosomal protein S1 of Thermus thermophilus in solution under different ionic conditions, Biofizika, 52, 216–222.

    CAS  PubMed  Google Scholar 

  32. Theobald, D. L., Mitton-Fry, R. M., and Wuttke, D. S. (2003) Nucleic acid recognition by OB-fold proteins, Annu. Rev. Biophys. Biomol. Struct., 32, 115–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Selivanova, O. M., Guryanov, S. G., Enin, G. A., Skabkin, M. A., Ovchinnikov, L. P., and Serdyuk, I. N. (2010) YB-1 is capable of forming extended nanofibrils, Biochemistry (Moscow), 75, 115–120.

    Article  CAS  Google Scholar 

  34. Guryanov, S. G., Selivanova, O. M., Nikulin, A. D., Enin, G. A., Melnik, B. S., Kretov, D. A., Serdyuk, I. N., and Ovchinnikov, L. P. (2012) Formation of amyloid-like fibrils by Y-box binding protein 1 (YB-1) is mediated by its cold shock domain and modulated by disordered terminal domains, PLoS One, 7, e36969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. William Studier, F., Rosenberg, A. H., Dunn, J. J., and Dubendorff, J. W. (1990) Use of T7 RNA polymerase to direct expression of cloned genes, Methods Enzymol., 185, 60–89.

    Article  Google Scholar 

  36. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein—dye binding, Anal. Biochem., 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  37. Gill, S. C., and von Hippel, P. H. (1989) Calculation of protein extinction coefficients from amino acid sequence data, Anal. Biochem., 182, 319–326.

    Article  CAS  PubMed  Google Scholar 

  38. Savitzky, A., and Golay, M. J. E. (1964) Smoothing and differentiation of data by simplified least squares procedures, Anal. Biochem., 36, 1627–1639.

    CAS  Google Scholar 

  39. Micsonai, A., Wien, F., Bulyaki, E., Kun, J., Moussong, E., Lee, Y.-H., Goto, Y., Refregiers, M., and Kardos, J. (2018) BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra, Nucleic Acids Res., 46, 315–322.

    Article  CAS  Google Scholar 

  40. Balobanov, V. A., Katina, N. S., Finkelstein, A. V., and Bychkova, V. E. (2017) Intermediate states of apomyoglobin: are they parts of the same area of conformations diagram? Biochemistry (Moscow), 82, 625–631.

    Article  CAS  Google Scholar 

  41. Surin, A. K., Grishin, S. Yu., and Galzitskaya, O. V. (2019) Identification of amyloidogenic regions in the spine of insulin fibrils, Biochemistry (Moscow), 84, 47–55.

    Article  CAS  Google Scholar 

  42. Zhang, J., Xin, L., Shan, B., Chen, W., Xie, M., Yuen, D., Zhang, W., Zhang, Z., Lajoie, G. A., and Ma, B. (2012) PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification, Mol. Cell. Proteomics, 11, M111.010587.

    Article  PubMed  CAS  Google Scholar 

  43. Katina, N. S., Suvorina, M. Yu., Grigorashvili, E. I., Marchenkov, V. V., Ryabova, N. A., Nikulin, A. D., and Surin, A. K. (2017) Identification of regions in apomyoglobin which form intermolecular interactions in amyloid aggregates using high-performance mass spectrometry, J. Anal. Chem., 72, 1271–1279.

    Article  CAS  Google Scholar 

  44. Selivanova, O. M., Grishin, S. Yu., Glyakina, A. V., Sadgyan, A. S., Ushakova, N. I., and Galzitskaya, O. V. (2018) Analysis of insulin analogues and a strategy for their further development, Biochemistry (Moscow), 83 (Suppl 1), 146–162.

    Article  Google Scholar 

  45. Yusupov, M. M., Garber, M. B., Vasiliev, V. D., and Spirin, A. S. (1991) Thermus thermophilus ribosomes for crystallographic studies, Biochimie, 73, 887–897.

    Article  CAS  PubMed  Google Scholar 

  46. Tung, C. S., and Sanbonmatsu, K. Y. (2004) Atomic model of the Thermus thermophilus 70S ribosome developed in silico, Biophys. J., 87, 2714–2722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Galzitskaya.

Additional information

Funding

This work was supported by the Russian Science Foundation (project 18-14-00321) with participation of the Center for Collective Use “Structural and Functional Studies of Proteins and RNA” of the Institute of Protein Research, Russian Academy of Sciences (584307). EM studies were carried out using equipment of the Center for Collective Use (no. 670266).

Conflict of interest

The authors declare no conflict of interest.

Compliance with ethical standards

This article does not contain any research involving humans or animals as research subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishin, S.Y., Dzhus, U.F., Selivanova, O.M. et al. Comparative Analysis of Aggregation of Thermus thermophilus Ribosomal Protein bS1 and Its Stable Fragment. Biochemistry Moscow 85, 344–354 (2020). https://doi.org/10.1134/S0006297920030104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920030104

Keywords

Navigation