Skip to main content
Log in

Interleukin-4 Restores Insulin Sensitivity in Insulin-Resistant Osteoblasts by Increasing the Expression of Insulin Receptor Substrate 1

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Obesity and latent inflammation can give rise to insulin resistance and type 2 diabetes. Here we established an insulin resistance model of osteoblasts to explore the restoration effect of anti-inflammatory interleukin-4 (IL-4) on insulin sensitivity and its mechanism. We found that IL-4 inhibited cell proliferation in a concentration- and time-dependent manner. Insulation resistance significantly reduced the phosphorylation levels of the insulin receptor substrate 1 (IRS1; Tyr612), Akt (Ser473), and AS160 (Ser318) proteins. The addition of IL-4 to the insulin resistance model led to a dose-dependent stimulation of the phosphorylation of IRS1, Akt, and AS160. IL-4 fully restored the activation of the insulin cascade in insulin-resistant cells at the concentration of 50 ng/ml. Additionally, IL-4 promoted the expression of IRS1 in a time-dependent manner. We conjecture that IL-4 restores insulin sensitivity in osteoblasts by upregulating the expression of IRS1. It was also found that IL-4 promoted the expression of osteoprotegerin depending on the time of exposure. This effect may play an important role in the regulation of the energy metabolism in the whole body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALP:

alkaline phosphatase

IL-4:

interleukin-4

IR:

insulin receptor

IRS1:

insulin receptor substrate 1

OCN:

osteocalcin

OPG:

osteoprotegerin

PA:

palmitic acid

T2D:

type 2 diabetes

References

  1. Bluher, M. (2016) Adipose tissue inflammation: a cause or consequence of obesity-related insulin resistance? Clin. Sci. (Lond.), 130, 1603–1614, doi: https://doi.org/10.1042/cs20160005.

    Article  Google Scholar 

  2. Karalliedde, J., and Gnudi, L. (2016) Diabetes mellitus, a complex and heterogeneous disease, and the role of insulin resistance as a determinant of diabetic kidney disease, Nephrol. Dial. Transplant., 31, 206–213, doi: https://doi.org/10.1093/ndt/gfu405.

    CAS  PubMed  Google Scholar 

  3. Ebstein, W. (2002) Invited comment on W. Ebstein: On the therapy of diabetes mellitus, in particular on the application of sodium salicylate, J. Mol. Med. (Berl.), 80, 618, discussion 619.

    Article  Google Scholar 

  4. Hotamisligil, G. S., Shargill, N. S., and Spiegelman, B. M. (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance, Science, 259, 87–91, doi: https://doi.org/10.1126/science.7678183.

    Article  CAS  Google Scholar 

  5. Hundal, R. S., Petersen, K. F., Mayerson, A. B., Randhawa, P. S., Inzucchi, S., Shoelson, S. E., and Shulman, G. I. (2002) Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes, J. Clin. Invest., 109, 1321–1326, doi: https://doi.org/10.1172/jci14955.

    Article  CAS  Google Scholar 

  6. Shoelson, S. E., Lee, J., and Goldfine, A. B. (2006) Inflammation and insulin resistance, J. Clin. Invest., 116, 1793–1801, doi: https://doi.org/10.1172/jci29069.

    Article  CAS  Google Scholar 

  7. Ricardo-Gonzalez, R. R., Red Eagle, A., Odegaard, J. I., Jouihan, H., Morel, C. R., Heredia, J. E., Mukundan, L., Wu, D., Locksley, R. M., and Chawla, A. (2010) IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity, Proc. Natl. Acad. Sci. USA, 107, 22617–22622, doi: https://doi.org/10.1073/pnas.1009152108.

    Article  CAS  Google Scholar 

  8. Darkhal, P., Gao, M., Ma, Y., and Liu, D. (2015) Blocking high-fat diet-induced obesity, insulin resistance and fatty liver by overexpression of IL-13 gene in mice, Int. J. Obes. (Lond.), 39, 1292–1299, doi: https://doi.org/10.1038/ijo.2015.52.

    Article  CAS  Google Scholar 

  9. Stafeev, I. S., Michurina, S. S., Podkuychenko, N. V., Vorotnikov, A. V., Menshikov, M. Y., and Parfyonova, Y. V. (2018) Interleukin-4 restores insulin sensitivity in lipid-induced insulin-resistant adipocytes, Biochemistry (Moscow), 83, 498–506, doi: https://doi.org/10.1134/S0006297918050036.

    Article  CAS  Google Scholar 

  10. Ferron, M., Wei, J., Yoshizawa, T., Del Fattore, A., DePinho, R. A., Teti, A., Ducy, P., and Karsenty, G. (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism, Cell, 142, 296–308, doi: https://doi.org/10.1016/j.cell.2010.06.003.

    Article  CAS  Google Scholar 

  11. Avnet, S., Sciacca, L., Salerno, M., Gancitano, G., Cassarino, M. F., Longhi, A., Zakikhani, M., Carboni, J. M., Gottardis, M., Giunti, A., Pollak, M., Vigneri, R., and Baldini, N. (2009) Insulin receptor isoform A and insulinlike growth factor II as additional treatment targets in human osteosarcoma, Cancer Res., 69, 2443–2452, doi: https://doi.org/10.1158/0008-5472.can-08-2645.

    Article  CAS  Google Scholar 

  12. Clemens, T. L., and Karsenty, G. (2011) The osteoblast: an insulin target cell controlling glucose homeostasis, J. Bone Miner. Res., 26, 677–680, doi: https://doi.org/10.1002/jbmr.321.

    Article  CAS  Google Scholar 

  13. Wei, J., Ferron, M., Clarke, C. J., Hannun, Y. A., Jiang, H., Blaner, W. S., and Karsenty, G. (2014) Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation, J. Clin. Invest., 124, 1–13, doi: https://doi.org/10.1172/jci72323.

    Article  Google Scholar 

  14. Bilotta, F. L., Arcidiacono, B., Messineo, S., Greco, M., Chiefari, E., Britti, D., Nakanishi, T., Foti, D. P., and Brunetti, A. (2018) Insulin and osteocalcin: further evidence for a mutual cross-talk, Endocrine, 59, 622–632, doi: https://doi.org/10.1007/s12020-017-1396-0.

    Article  CAS  Google Scholar 

  15. Shaw, L. M. (2011) The insulin receptor substrate (IRS) proteins: at the intersection of metabolism and cancer, Cell Cycle, 10, 1750–1756, doi: https://doi.org/10.4161/cc.10.11.15824.

    Article  CAS  Google Scholar 

  16. Stafeev, I. S., Vorotnikov, A. V., Ratner, E. I., Menshikov, M. Y., and Parfyonova, Y. V. (2017) Latent inflammation and insulin resistance in adipose tissue, Int. J. Endocrinol., 2017, 5076732, doi: https://doi.org/10.1155/2017/5076732.

    Article  CAS  Google Scholar 

  17. Boura-Halfon, S., and Zick, Y. (2009) Serine kinases of insulin receptor substrate proteins, Vitam. Horm., 80, 313–349, doi: https://doi.org/10.1016/s0083-6729(08)00612-2.

    Article  CAS  Google Scholar 

  18. Boura-Halfon, S., and Zick, Y. (2009) Phosphorylation of IRS proteins, insulin action, and insulin resistance, Am. J. Physiol. Endocrinol. Metab., 296, E581–591, doi: https://doi.org/10.1152/ajpendo.90437.2008

    Article  CAS  Google Scholar 

  19. Zick, Y. (2004) Uncoupling insulin signalling by serine/threonine phosphorylation: a molecular basis for insulin resistance, Biochem. Soc. Trans., 32 (Pt. 5), 812–816, doi: https://doi.org/10.1042/bst0320812

    Article  CAS  Google Scholar 

  20. Ura, K., Morimoto, I., Watanabe, K., Saito, K., Yanagihara, N., and Eto, S. (2000) Interleukin (IL)-4 and IL-13 inhibit the differentiation of murine osteoblastic MC3T3-E1 cells, Endocrin. J., 47, 293–302, doi: https://doi.org/10.1507/endocrj.47.293.

    Article  CAS  Google Scholar 

  21. Riancho, J. A., Zarrabeitia, M. T., Olmos, J. M., Amado, J. A., and Gonzalez-Macias, J. (1993) Effects of interleukin-4 on human osteoblast-like cells, Bone Miner., 21, 53–61, doi: https://doi.org/10.1016/s0169-6009(08)80120-1.

    Article  CAS  Google Scholar 

  22. Riancho, J. A., Gonzalez-Marcias, J., Amado, J. A., Olmos, J. M., and Fernandez-Luna, J. L. (1995) Interleukin-4 as a bone regulatory factor: effects on murine osteoblast-like cells, J. Endocrinol. Invest., 18, 174–179.

    Article  CAS  Google Scholar 

  23. Frost, A., Jonsson, K. B., Brandstrom, H., Ljunghall, S., Nilsson, O., and Ljunggren, O. (2001) Interleukin (IL)-13 and IL-4 inhibit proliferation and stimulate IL-6 formation in human osteoblasts: evidence for involvement of receptor subunits IL-13R, IL-13Ralpha, and IL-4Ralpha, Bone, 28, 268–274.

    Article  CAS  Google Scholar 

  24. Silfversward, C. J., Penno, H., Frost, A., Nilsson, O., and Ljunggren, O. (2010) Expression of markers of activity in cultured human osteoblasts: effects of interleukin-4 and interleukin-13, Scand. J. Clin. Lab. Invest., 70, 338–342, doi: https://doi.org/10.3109/00365513.2010.488698.

    Article  Google Scholar 

  25. Taniguchi, C. M., Emanuelli, B., and Kahn, C. R. (2006) Critical nodes in signalling pathways: insights into insulin action, Nat. Rev. Mol. Cell Biol., 7, 85–96, doi: https://doi.org/10.1038/nrm1837.

    Article  CAS  Google Scholar 

  26. O’Connor, J. C., Sherry, C. L., Guest, C. B., and Freund, G. G. (2007) Type 2 diabetes impairs insulin receptor sub-strate-2-mediated phosphatidylinositol 3-kinase activity in primary macrophages to induce a state of cytokine resistance to IL-4 in association with overexpression of suppressor of cytokine signaling-3, J. Immunol., 178, 6886–6893, doi: https://doi.org/10.4049/jimmunol.178.11.6886.

    Article  Google Scholar 

  27. Myers, M. G., Jr., and White, M. F. (1996) Insulin signal transduction and the IRS proteins, Annu. Rev. Pharmacol. Toxicol., 36, 615–658, doi: https://doi.org/10.1146/annurev.pa.36.040196.003151.

    Article  CAS  Google Scholar 

  28. Paz, K., Voliovitch, H., Hadari, Y. R., Roberts, C. T., Jr., LeRoith, D., and Zick, Y. (1996) Interaction between the insulin receptor and its downstream effectors. Use of individually expressed receptor domains for structure/function analysis, J. Biol. Chem., 271, 6998–7003, doi: https://doi.org/10.1074/jbc.271.12.6998.

    Article  CAS  Google Scholar 

  29. Sun, X. J., Miralpeix, M., Myers, M. G., Jr., Glasheen, E. M., Backer, J. M., Kahn, C. R., and White, M. F. (1992) Expression and function of IRS-1 in insulin signal transmission, J. Biol. Chem., 267, 22662–22672.

    CAS  PubMed  Google Scholar 

  30. Ferron, M., Hinoi, E., Karsenty, G., and Ducy, P. (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice, Proc. Natl. Acad. Sci. USA, 105, 5266–5270, doi: https://doi.org/10.1073/pnas.0711119105.

    Article  CAS  Google Scholar 

  31. Lee, N. K., Sowa, H., Hinoi, E., Ferron, M., Ahn, J. D., Confavreux, C., Dacquin, R., Mee, P. J., McKee, M. D., Jung, D. Y., Zhang, Z., Kim, J. K., Mauvais-Jarvis, F., Ducy, P., and Karsenty, G. (2007) Endocrine regulation of energy metabolism by the skeleton, Cell, 130, 456–469, doi: https://doi.org/10.1016/j.cell.2007.05.047.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Chao or M. Li.

Additional information

Funding

This study was partially supported by the National Nature Science Foundation of China (grant nos. 81470719 and 81611140133) and Shandong Key Research and Development Project (grant no. 2018GSF118114) to M. Li and was supported by the National Nature Science Foundation of China (grant no. 81771108) to J. Guo.

Conflict of interest

We declare that we have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, R., Li, D., Yue, Z. et al. Interleukin-4 Restores Insulin Sensitivity in Insulin-Resistant Osteoblasts by Increasing the Expression of Insulin Receptor Substrate 1. Biochemistry Moscow 85, 334–343 (2020). https://doi.org/10.1134/S0006297920030098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920030098

Keywords

Navigation