Skip to main content
Log in

Variations in the Expression of Terminal Oligosaccharide Units and Glycosylation of Poly(N-acetyllactosamine) Chain in the Helicobacter pylori Lipopolysaccharide upon Colonization of Rhesus Macaques

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Helicobacter pylori is an important human pathogen that causes gastritis, gastric and duodenal ulcers, and gastric cancer. O-polysaccharides of H. pylori lipopolysaccharide (LPS) are composed of (β1→3)-poly(N-acetyllactosamine) (polyLacNAc) decorated with multiple α-L-fucose residues. In many strains, their terminal LacNAc units are mono- or difucosylated to mimic Lewis X (Lex) and/or Lewis Y (Ley) oligosaccharides. The studies in rhesus macaques as a model of human infection by H. pylori showed that this bacterium adapts to the host during colonization by expressing host Lewis antigens. Here, we characterized LPS from H. pylori strains used in the previous study, including the parental J166 strain and the three derivatives (98-149, 98-169, and 98-181) isolated from rhesus macaques after long-term colonization. Chemical and NMR spectroscopic analyses of the LPS showed that the parent strain expressed Lex, Ley, and H type 1 terminal oligosaccharide units. The daughter strains were similar to the parental one in the presence of the same LPS core and fucosylated polyLacNAc chain of the same length but differed in the terminal oligosaccharide units. These were Lex in the isolates 98-149 and 98-169, which corresponded to the Lea phenotype of the host animals, and Ley was found in the 98-181 isolate from the macaque characterized by the Leb phenotype. As Lea and Leb are isomers of Lex and Ley, respectively, the observed correlation confirmed adaptation of the expression of terminal oligosaccharide units in H. pylori strains to the properties of the host gastric mucosa. The 98-181 strain also acquired glucosylation of the polyLacNAc chain and was distinguished by a lower expression of fucosylated internal LacNAc units (internal Lex) as a result of decoration of polyLacNAc with β-glucopyranose, which may also play a role in the bacterial adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

COSY:

correlation spectroscopy

DD-Hep and LD-Hep:

D-glycero- and L-glycero-D-manno-heptose

ESI MS:

electrospray ionization mass spectrometry

GLC:

gas-liquid chromatography

Kdo:

3-deoxy-D-manno-oct-2-ulosonic acid

LacNAc:

N-acetyllactosamine

Lea:

Leb, Lex, Ley, and H-1, Lewis a, Lewis b, Lewis X, Lewis Y and H type 1 antigens, respectively

LPS:

lipopolysaccharide

PEtn:

2-aminoethyl phosphate

polyLacNAc:

(β1→3)-poly(N-acetyllactosamine)

References

  1. Kusters, J. G., van Vliet, A. H., and Kuipers, E. J. (2006) Pathogenesis of Helicobacter pylori infection, Clin. Microbiol. Rev., 19, 449–490.

    Article  CAS  Google Scholar 

  2. Chmiela, M., and Kupcinskas, J. (2019) Pathogenesis of Helicobacter pylori infection, Helicobacter, 24 (Suppl. 1), e12638.

    PubMed  PubMed Central  Google Scholar 

  3. Moran, A. P., Lindner, B., and Walsh, E. J. (1997) Structural characterization of the lipid A component of Helicobacter pylori rough- and smooth-form lipopolysaccharides, J. Bacteriol., 179, 6453–6463.

    Article  CAS  Google Scholar 

  4. Altman, E., Chandan, V., Li, J., and Vinogradov, E. (2011) A reinvestigation of the lipopolysaccharide structure of Helicobacter pylori strain Sydney (SS1), FEBS J., 278, 3484–3493.

    Article  CAS  Google Scholar 

  5. Moran, A. P. (1996) The role of lipopolysaccharide in Helicobacter pylori pathogenesis, Aliment. Pharmacol. Ther., 10 (Suppl. 1), 39–50.

    Article  CAS  Google Scholar 

  6. Moran, A. P., and Aspinall, G. O. (1998) Unique structural and biological features of Helicobacter pylori lipopolysaccharides, Prog. Clin. Biol. Res., 397, 37–49.

    CAS  PubMed  Google Scholar 

  7. Knirel, Y. A., Kocharova, N. A., Hynes, S. O., Widmalm, G., Andersen, L. P., Jansson, P.-E., and Moran, A. P. (1999) Structural studies on lipopolysaccharides of serologically non-typable strains of Helicobacter pylori, AF1 and 007, expressing Lewis antigenic determinants, Eur. J. Biochem., 266, 123–131.

    Article  CAS  Google Scholar 

  8. Wang, G., Ge, Z. M., Rasko, D. A., and Taylor, D. E. (2000) Lewis antigens in Helicobacter pylori: biosynthesis and phase variation, Mol. Microbiol., 36, 1187–1196.

    Article  CAS  Google Scholar 

  9. Monteiro, M. A. (2001) Helicobacter pylori: a wolf in sheep’s clothing: the glycotype families of Helicobacter pylori lipopolysaccharides expressing histo-blood groups: structure, biosynthesis, and role in pathogenesis, Adv. Carbohydr. Chem. Biochem., 57, 99–158.

    Article  CAS  Google Scholar 

  10. Moran, A. P. (2008) Relevance of fucosylation and Lewis antigen expression in the bacterial gastroduodenal pathogen Helicobacter pylori, Carbohydr. Res., 343, 1952–1965.

    Article  CAS  Google Scholar 

  11. Chmiela, M., Miszczyk, E., and Rudnicka, K. (2014) Structural modifications of Helicobacter pylori lipopolysaccharide: an idea for how to live in peace, World J. Gastroenterol., 20, 9882–9897.

    Article  Google Scholar 

  12. Li, H., Liao, T., Debowski, A. W., Tang, H., Nilsson, H. O., Stubbs, K. A., Marshall, B. J., and Benghezal, M. (2016) Lipopolysaccharide structure and biosynthesis in Helicobacter pylori, Helicobacter, 21, 445–461.

    Article  CAS  Google Scholar 

  13. Monteiro, M. A., Chan, K. H. N., Rasko, D. A., Taylor, D. E., Zheng, P. Y., Appelmelk, B. J., Wirth, H. P., Yang, M. Q., Blaser, M. J., Hynes, S. O., Moran, A. P., and Perry, M. B. (1998) Simultaneous expression of type 1 and type 2 Lewis blood group antigens by Helicobacter pylori lipopolysaccharides, J. Biol. Chem., 273, 11533–11543.

    Article  CAS  Google Scholar 

  14. Wirth, H.-P., Manqiao, Y., Edgardo, S.-V., Berg, D. E., Dubois, A., and Blaser, M. J. (2006) Host Lewis phenotype-dependent Helicobacter pylori Lewis antigen expression in rhesus macaques, FASEB J., 20, 1534–1536.

    Article  CAS  Google Scholar 

  15. Moran, A. P., Helander, I. M., and Kosunen, T. U. (1992) Compositional analysis of Helicobacter pylori rough-form lipopolysaccharides, J. Bacteriol., 174, 1370–1377.

    Article  CAS  Google Scholar 

  16. Westphal, O., and Jann, K. (1965) Bacterial lipopolysaccharides extraction with phenol–water and further applications of the procedure, Methods Carbohydr. Chem., 5, 83–91.

    CAS  Google Scholar 

  17. Hakomori, S.-I. (1964) A rapid permethylation of glycolipid and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide, J. Biochem. (Tokyo), 55, 205–208.

    CAS  Google Scholar 

  18. Moran, A. P., Knirel, Y. A., Senchenkova, S. N., Widmalm, G., Hynes, S. O., and Jansson, P.-E. (2002) Phenotypic variation in molecular mimicry between Helicobacter pylori lipopolysaccharides and human gastric epithelial cell surface glycoforms. Acid-induced phase variation in Lewis(x) and Lewis(y) expression by H. pylori lipopolysaccharides, J. Biol. Chem., 277, 5785–5795.

    Article  CAS  Google Scholar 

  19. Monteiro, M. A., Rasko, D., Taylor, D. E., and Perry, M. B. (1998) Glucosylated N-acetyllactosamine O-antigen chain in the lipopolysaccharide from Helicobacter pylori strain UA861, Glycobiology, 8, 107–112.

    Article  CAS  Google Scholar 

  20. Aspinall, G. O., Monteiro, M. A., Pang, H., Walsh, E. J., and Moran, A. P. (1996) Lipopolysaccharide of the Helicobacter pylori type strain NCTC 11637 (ATCC 43504): structure of the O-antigen chain and core oligosaccharide regions, Biochemistry, 35, 2489–2497.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. P.-E. Jansson (Karolinska Institute, Clinical Research Center, Huddinge University Hospital, Huddinge, Sweden) for the access to laboratory equipment, including an NMR spectrometer and a GLC-mass spectrometer, M. J. Blaser (New York University, New York, USA) for providing H. pylori strains, and A. P. Moran (National University of Ireland, Galway, Ireland) for cultivation of bacteria and valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Perepelov.

Ethics declarations

Ethical approval. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Conflict of interest. The authors declare no conflict of interest in financial or any other area.

Published in Russian in Biokhimiya, 2020, Vol. 85, No. 2, pp. 272-279.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM19-289, December 30, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perepelov, A.V., Senchenkova, S.N. & Knirel, Y.A. Variations in the Expression of Terminal Oligosaccharide Units and Glycosylation of Poly(N-acetyllactosamine) Chain in the Helicobacter pylori Lipopolysaccharide upon Colonization of Rhesus Macaques. Biochemistry Moscow 85, 234–240 (2020). https://doi.org/10.1134/S0006297920020108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920020108

Keywords

Navigation