Skip to main content

Advertisement

Log in

Proteasome: a Nanomachinery of Creative Destruction

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the middle of the 20th century, it was postulated that degradation of intracellular proteins is a stochastic process. More than fifty years of intense studies have finally proven that protein degradation is a very complex and tightly regulated in time and space process that plays an incredibly important role in the vast majority of metabolic pathways. Degradation of more than a half of intracellular proteins is controlled by a hierarchically aligned and evolutionarily perfect system consisting of many components, the main ones being ubiquitin ligases and proteasomes, together referred to as the ubiquitin–proteasome system (UPS). The UPS includes more than 1000 individual components, and most of them are critical for the cell functioning and survival. In addition to the well-known signaling functions of ubiquitination, such as modification of substrates for proteasomal degradation and DNA repair, polyubiquitin (polyUb) chains are involved in other important cellular processes, e.g., cell cycle regulation, immunity, protein degradation in mitochondria, and even mRNA stability. This incredible variety of ubiquitination functions is related to the ubiquitin ability to form branching chains through the ε-amino group of any of seven lysine residues in its sequence. Deubiquitination is accomplished by proteins of the deubiquitinating enzyme family. The second main component of the UPS is proteasome, a multisubunit proteinase complex that, in addition to the degradation of functionally exhausted and damaged proteins, regulates many important cellular processes through controlled degradation of substrates, for example, transcription factors and cyclins. In addition to the ubiquitin-dependent-mediated degradation, there is also ubiquitin-independent degradation, when the proteolytic signal is either an intrinsic protein sequence or shuttle molecule. Protein hydrolysis is a critically important cellular function; therefore, any abnormalities in this process lead to systemic impairments further transforming into serious diseases, such as diabetes, malignant transformation, and neurodegenerative disorders (multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, Creutzfeldt–Jakob disease and Huntington’s disease). In this review, we discuss the mechanisms that orchestrate all components of the UPS, as well as the plurality of the fine-tuning pathways of proteasomal degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALS:

autophagic–lysosomal system

IFN:

interferon

MBP:

myelin basic protein

MHC:

major histocompatibility complex

ODC:

ornithine decarboxylase

Ub:

ubiquitin

UPS:

ubiquitin–proteasome system

References

  1. Schubert, U., Anton, L. C., Gibbs, J., Norbury, C. C., Yewdell, J. W., and Bennink, J. R. (2000) Rapid degrada–tion of a large fraction of newly synthesized proteins by pro–teasomes, Nature, 404, 770–774.

    Article  CAS  PubMed  Google Scholar 

  2. Joazeiro, C. A. P. (2017) Ribosomal stalling during trans–lation: providing substrates for ribosome–associated pro–tein quality control, Annu. Rev. Cell Dev. Biol., 33, 343–368.

    Article  CAS  PubMed  Google Scholar 

  3. Brandman, O., and Hegde, R. S. (2016) Ribosome–associ–ated protein quality control, Nat. Struct. Mol. Biol., 23, 7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chiti, F., and Dobson, C. M. (2017) Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade, Annu. Rev. Biochem., 86, 1–42.

    Article  CAS  Google Scholar 

  5. Lamark, T., Svenning, S., and Johansen, T. (2017) Regulation of selective autophagy: the p62/SQSTM1 para–digm, Essays Biochem., 61, 609–624.

    Article  PubMed  Google Scholar 

  6. Kaganovich, D., Kopito, R., and Frydman, J. (2008) Misfolded proteins partition between two distinct quality control compartments, Nature, 454, 1088–1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Balchin, D., Hayer–Hartl, M., and Hartl, F. U. (2016) In vivo aspects of protein folding and quality control, Science, 353, aac4354.

    Book  Google Scholar 

  8. McClellan, A. J., Tam, S., Kaganovich, D., and Frydman, J. (2005) Protein quality control: chaperones culling cor–rupt conformations, Nat. Cell Biol., 7, 736–741.

    Article  CAS  PubMed  Google Scholar 

  9. Labbadia, J., and Morimoto, R. I. (2015) The biology of proteostasis in aging and disease, Annu. Rev. Biochem., 84, 1–30.

    Article  CAS  Google Scholar 

  10. Bard, J. A. M., Goodall, E. A., Greene, E. R., Jonsson, E., Dong, K. C., and Martin, A. (2018) Structure and function of the 26S proteasome, Annu. Rev. Biochem., 87, 697–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lamb, C. A., Yoshimori, T., and Tooze, S. A. (2013) The autophagosome: origins unknown, biogenesis complex, Nat. Rev. Mol. Cell Biol., 14, 759–774.

    Article  CAS  PubMed  Google Scholar 

  12. Hershko, A., and Ciechanover, A. (1998) The ubiquitin sys–tem, Annu. Rev. Biochem., 67, 425–479.

    Article  CAS  PubMed  Google Scholar 

  13. Kwon, Y. T., and Ciechanover, A. (2017) The ubiquitin code in the ubiquitin–proteasome system and autophagy, Trends Biochem. Sci., 42, 873–886.

    Article  CAS  PubMed  Google Scholar 

  14. Dikic, I. (2017) Proteasomal and autophagic degradation systems, Annu. Rev. Biochem., 86, 193–224.

    Article  CAS  PubMed  Google Scholar 

  15. Scott, D., Oldham, N. J., Strachan, J., Searle, M. S., and Layfield, R. (2015) Ubiquitin–binding domains: mecha–nisms of ubiquitin recognition and use as tools to investi–gate ubiquitin–modified proteomes, Proteomics, 15, 844–861.

    Article  CAS  PubMed  Google Scholar 

  16. Grice, G. L., and Nathan, J. A. (2016) The recognition of ubiquitinated proteins by the proteasome, Cell. Mol. Life Sci., 73, 3497–3506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hartl, F. U. (2017) Protein misfolding diseases, Annu. Rev. Biochem., 86, 1–6.

    Article  CAS  Google Scholar 

  18. Rock, K. L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D., and Goldberg, A. L. (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules, Cell, 78, 761–771.

    Article  CAS  PubMed  Google Scholar 

  19. Maupin–Furlow, J., Gil, M., and Karadzic, I. (2004) Proteasomes: perspectives from the Archaea, Front. Biosci., 1, 1743–1758.

    Article  Google Scholar 

  20. Dahlmann, B. (2016) Mammalian proteasome subtypes: their diversity in structure and function, Arch. Biochem. Biophys., 591, 132–140.

    Article  CAS  PubMed  Google Scholar 

  21. DeMartino, G. N., and Slaughter, C. A. (1999) The pro–teasome, a novel protease regulated by multiple mecha–nisms, J. Biol. Chem., 274, 22123–22126.

    Article  CAS  PubMed  Google Scholar 

  22. Tanahashi, N., Murakami, Y., Minami, Y., Shimbara, N., Hendil, K. B., and Tanaka, K. (2000) Hybrid proteasomes. Induction by interferon–gamma and contribution to ATP–dependent proteolysis, J. Biol. Chem., 275, 14336–14345.

    Article  CAS  PubMed  Google Scholar 

  23. Fabre, B., Lambour, T., Delobel, J., Amalric, F., Monsarrat, B., Burlet–Schiltz, O., and Bousquet–Dubouch, M.–P. (2013) Subcellular distribution and dynamics of active proteasome complexes unraveled by a workflow combining in vivo complex cross–linking and quantitative proteomics, Mol. Cell. Proteomics, 12, 687–699.

    Article  CAS  PubMed  Google Scholar 

  24. Asano, S., Fukuda, Y., Beck, F., Aufderheide, A., Forster, F., Danev, R., and Baumeister, W. (2015) A molecular cen–sus of 26S proteasomes in intact neurons, Science, 347, 439–442.

    Article  CAS  PubMed  Google Scholar 

  25. Rechsteiner, M., and Hill, C. P. (2005) Mobilizing the pro–teolytic machine: cell biological roles of proteasome activa–tors and inhibitors, Trends Cell Biol., 15, 27–33.

    Article  CAS  PubMed  Google Scholar 

  26. Ramachandran, K. V., and Margolis, S. S. (2017) A mam–malian nervous–system–specific plasma membrane protea–some complex that modulates neuronal function, Nat. Struct. Mol. Biol., 24, 419–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Groll, M., Ditzel, L., Lowe, J., Stock, D., Bochtler, M., Bartunik, H. D., and Huber, R. (1997) Structure of 20S proteasome from yeast at 2.4 Å resolution, Nature, 386, 463–471.

    Article  CAS  PubMed  Google Scholar 

  28. Groll, M., and Huber, R. (2004) Inhibitors of the eukaryot–ic 20S proteasome core particle: a structural approach, Biochim. Biophys. Acta, 1695, 33–44.

    Article  CAS  PubMed  Google Scholar 

  29. Groll, M., Bochtler, M., Brandstetter, H., Clausen, T., and Huber, R. (2005) Molecular machines for protein degrada–tion, Chembiochem, 6, 222–256.

    Article  CAS  PubMed  Google Scholar 

  30. Zuhl, F., Tamura, T., Dolenc, I., Cejka, Z., Nagy, I., De Mot, R., and Baumeister, W. (1997) Subunit topology of the Rhodococcus proteasome, FEBS Lett., 400, 83–90.

    Article  CAS  PubMed  Google Scholar 

  31. Baumeister, W., Walz, J., Zuhl, F., and Seemuller, E. (1998) The proteasome: paradigm of a self–compartmentalizing protease, Cell, 92, 367–380.

    Article  CAS  PubMed  Google Scholar 

  32. Kunjappu, M. J., and Hochstrasser, M. (2014) Assembly of the 20S proteasome, Biochim. Biophys. Acta, 1843, 2–12.

    Article  CAS  PubMed  Google Scholar 

  33. Osmulski, P. A., Hochstrasser, M., and Gaczynska, M. (2009) A tetrahedral transition state at the active sites of the 20S proteasome is coupled to opening of the alpha–ring channel, Structure, 17, 1137–1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rabl, J., Smith, D. M., Yu, Y., Chang, S.–C., Goldberg, A. L., and Cheng, Y. (2008) Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases, Mol. Cell, 30, 360–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jones, C. L., Njomen, E., Sjogren, B., Dexheimer, T. S., and Tepe, J. J. (2017) Small molecule enhancement of 20S proteasome activity targets intrinsically disordered pro–teins, ACS Chem. Biol., 12, 2240–2247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goldberg, A. L. (2003) Protein degradation and protection against misfolded or damaged proteins, Nature, 426, 895–899.

    Article  CAS  PubMed  Google Scholar 

  37. Keck, S., Nitsch, R., Grune, T., and Ullrich, O. (2003) Proteasome inhibition by paired helical filament–tau in brains of patients with Alzheimer’s disease, J. Neurochem., 85, 115–122.

    Article  CAS  PubMed  Google Scholar 

  38. Choi, W. H., de Poot, S. A. H., Lee, J. H., Kim, J. H., Han, D. H., Kim, Y. K., Finley, D., and Lee, M. J. (2016) Open–gate mutants of the mammalian proteasome show enhanced ubiquitin–conjugate degradation, Nat. Commun., 7, 10963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kulichkova, V. A., Fedorova, O. A., Tsimokha, A. S., Moiseeva, T. N., Bottril, A., Lezina, L., Gauze, L. N., Konstantinova, I. M., Mittenberg, A. G., and Barlev, N. (2010) 26S proteasome exhibits endoribonuclease activity controlled by extracellular stimuli, Cell Cycle, 9, 840–849.

    CAS  Google Scholar 

  40. Mittenberg, A. G., Moiseeva, T. N., Kuzyk, V. O., and Barlev, N. A. (2016) Regulation of endoribonuclease activ–ity of alpha–type proteasome subunits in proery–throleukemia K562 upon hemin–induced differentiation, Protein J., 35, 17–23.

    Article  CAS  PubMed  Google Scholar 

  41. Kloetzel, P. M. (2004) Generation of major histocompati–bility complex class I antigens: functional interplay between proteasomes and TPPII, Nat. Immunol., 5, 661–669.

    Article  CAS  PubMed  Google Scholar 

  42. Sijts, E. J. A. M., and Kloetzel, P.–M. M. (2011) The role of the proteasome in the generation of MHC class I ligands and immune responses, Cell Mol. Life Sci., 68, 1491–1502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chatterjee–Kishore, M., Wright, K. L., Ting, J. P., and Stark, G. R. (2000) How Stat1 mediates constitutive gene expression: a complex of unphosphorylated Stat1 and IRF1 supports transcription of the LMP2 gene, EMBO J., 19, 4111–4122.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chapiro, J., Claverol, S., Piette, F., Ma, W., Stroobant, V., Guillaume, B., Gairin, J.–E., Morel, S., Burlet–Schiltz, O., Monsarrat, B., Boon, T., and van den Eynde, B. J. (2006) Destructive cleavage of antigenic peptides either by the immunoproteasome or by the standard proteasome results in differential antigen presentation, J. Immunol., 176, 1053–1061.

    Article  CAS  PubMed  Google Scholar 

  45. Chen, W., Norbury, C., and Cho, Y. (2001) Immunoproteasomes shape immunodominance hierar–chies of antiviral CD8+ T cells at the levels of T cell reper–toire and presentation of viral antigens, J. Exp. Med., 193, 1319–1326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ebstein, F., Textoris–Taube, K., Keller, C., Golnik, R., Vigneron, N., Van Den Eynde, B. J., Schuler–Thurner, B., Schadendorf, D., Lorenz, F. K. M., Uckert, W., Urban, S., Lehmann, A., Albrecht–Koepke, N., Janek, K., Henklein, P., Niewienda, A., Kloetzel, P. M., and Mishto, M. (2016) Proteasomes generate spliced epitopes by two different mechanisms and as efficiently as non–spliced epitopes, Sci. Rep., 6, 24032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Berkers, C. R., de Jong, A., Schuurman, K. G., Linnemann, C., Geenevasen, J. A. J., Schumacher, T. N. M., Rodenko, B., and Ovaa, H. (2015) Peptide splicing in the proteasome creates a novel type of antigen with an isopeptide linkage, J. Immunol., 195, 4075–4084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Berkers, C. R., de Jong, A., Schuurman, K. G., Linnemann, C., Meiring, H. D., Janssen, L., Neefjes, J. J., Schumacher, T. N. M., Rodenko, B., and Ovaa, H. (2015) Definition of proteasomal peptide splicing rules for high–efficiency spliced peptide presentation by MHC class I molecules, J. Immunol., 195, 4085–4095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liepe, J., Marino, F., Sidney, J., Jeko, A., Bunting, D. E., Sette, A., Kloetzel, P. M., Stumpf, M. P. H., Heck, A. J. R., and Mishto, M. (2016) A large fraction of HLA class I lig–ands are proteasome–generated spliced peptides, Science, 354, 354–358.

    Article  CAS  PubMed  Google Scholar 

  50. Qureshi, N., Morrison, D. C., and Reis, J. (2012) Proteasome protease mediated regulation of cytokine induction and inflammation, Biochim. Biophys. Acta Mol. Cell Res., 1823, 2087–2093.

    Article  CAS  Google Scholar 

  51. Uechi, H., Hamazaki, J., and Murata, S. (2014) Characterization of the testis–specific proteasome subunit α4s in mammals, J. Biol. Chem., 289, 12365–12374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tomaru, U., Ishizu, A., Murata, S., Miyatake, Y., Suzuki, S., Takahashi, S., Kazamaki, T., Ohara, J., Baba, T., Iwasaki, S., Fugo, K., Otsuka, N., Tanaka, K., and Kasahara, M. (2009) Exclusive expression of proteasome subunit 5t in the human thymic cortex, Blood, 113, 5186–5191.

    Article  CAS  PubMed  Google Scholar 

  53. Murata, S., Takahama, Y., and Tanaka, K. (2008) Thymoproteasome: probable role in generating positively selecting peptides, Curr. Opin. Immunol., 20, 192–196.

    Article  CAS  PubMed  Google Scholar 

  54. Florea, B. I., Verdoes, M., Li, N., van der Linden, W. A., Geurink, P. P., van den Elst, H., Hofmann, T., de Ru, A., van Veelen, P. A., Tanaka, K., Sasaki, K., Murata, S., den Dulk, H., Brouwer, J., Ossendorp, F. A., Kisselev, A. F., and Overkleeft, H. S. (2010) Activity–based profiling reveals reactivity of the murine thymoproteasome–specific subunit β5t, Chem. Biol., 17, 795–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Murata, S., Sasaki, K., Kishimoto, T., Niwa, S., Hayashi, H., Takahama, Y., and Tanaka, K. (2007) Regulation of CD8+ T cell development by thymus–specific proteasomes, Science, 316, 1349–1353.

    Article  CAS  PubMed  Google Scholar 

  56. Sauer, R. T., and Baker, T. A. (2011) AAA+ proteases: ATP–fueled machines of protein destruction, Annu. Rev. Biochem., 80, 587–612.

    Article  CAS  PubMed  Google Scholar 

  57. Tomko, R. J., Funakoshi, M., Schneider, K., Wang, J., and Hochstrasser, M. (2010) Heterohexameric ring arrange–ment of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly, Mol. Cell, 38, 393–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schreiner, P., Chen, X., Husnjak, K., Randles, L., Zhang, N., Elsasser, S., Finley, D., Dikic, I., Walters, K. J., and Groll, M. (2008) Ubiquitin docking at the proteasome through a novel pleckstrin–homology domain interaction, Nature, 453, 548–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Husnjak, K., Elsasser, S., Zhang, N., Chen, X., Randles, L., Shi, Y., Hofmann, K., Walters, K. J., Finley, D., and Dikic, I. (2008) Proteasome subunit Rpn13 is a novel ubiq–uitin receptor, Nature, 453, 481–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shi, Y., Chen, X., Elsasser, S., Stocks, B. B., Tian, G., Lee, B.–H., Shi, Y., Zhang, N., de Poot, S. A. H., Tuebing, F., Sun, S., Vannoy, J., Tarasov, S. G., Engen, J. R., Finley, D., and Walters, K. J. (2016) Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the pro–teasome, Science, 351, aad9421.

    Google Scholar 

  61. Verma, R., Aravind, L., Oania, R., McDonald, W. H., Yates, J. R., Koonin, E. V., and Deshaies, R. J. (2002) Role of Rpn11 metalloprotease in deubiquitination and degrada–tion by the 26S proteasome, Science, 298, 611–615.

    Article  CAS  PubMed  Google Scholar 

  62. Glickman, M. H., Rubin, D. M., Coux, O., Wefes, I., Pfeifer, G., Cjeka, Z., Baumeister, W., Fried, V. A., and Finley, D. (1998) A subcomplex of the proteasome regula–tory particle required for ubiquitin–conjugate degradation and related to the COP9–signalosome and eIF3, Cell, 94, 615–623.

    Article  CAS  PubMed  Google Scholar 

  63. Matyskiela, M. E., Lander, G. C., and Martin, A. (2013) Conformational switching of the 26S proteasome enables substrate degradation, Nat. Struct. Mol. Biol., 20, 781–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sledz, P., Unverdorben, P., Beck, F., Pfeifer, G., Schweitzer, A., Forster, F., and Baumeister, W. (2013) Structure of the 26S proteasome with ATP–γS bound pro–vides insights into the mechanism of nucleotide–dependent substrate translocation, Proc. Natl. Acad. Sci. USA, 110, 7264–7269.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lander, G. C., Estrin, E., Matyskiela, M. E., Bashore, C., Nogales, E., and Martin, A. (2012) Complete subunit architecture of the proteasome regulatory particle, Nature, 482, 186–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schweitzer, A., Aufderheide, A., Rudack, T., Beck, F., Pfeifer, G., Plitzko, J. M., Sakata, E., Schulten, K., Forster, F., and Baumeister, W. (2016) Structure of the human 26S proteasome at a resolution of 3.9 Å, Proc. Natl. Acad. Sci. USA, 113, 7816–7821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Djuranovic, S., Hartmann, M. D., Habeck, M., Ursinus, A., Zwickl, P., Martin, J., Lupas, A. N., and Zeth, K. (2009) Structure and activity of the N–terminal substrate recognition domains in proteasomal ATPases, Mol. Cell, 34, 580–590.

    Article  CAS  PubMed  Google Scholar 

  68. Pathare, G. R., Nagy, I., Bohn, S., Unverdorben, P., Hubert, A., Korner, R., Nickell, S., Lasker, K., Sali, A., Tamura, T., Nishioka, T., Forster, F., Baumeister, W., and Bracher, A. (2012) The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcom–plexes together, Proc. Natl. Acad. Sci. USA, 109, 149–154.

    Article  PubMed  Google Scholar 

  69. Bech–Otschir, D., Helfrich, A., Enenkel, C., Consiglieri, G., Seeger, M., Holzhutter, H.–G., Dahlmann, B., and Kloetzel, P.–M. (2009) Polyubiquitin substrates allosteri–cally activate their own degradation by the 26S proteasome, Nat. Struct. Mol. Biol., 16, 219–225.

    Article  CAS  PubMed  Google Scholar 

  70. Wang, X., Yen, J., Kaiser, P., and Huang, L. (2010) Regulation of the 26S proteasome complex during oxidative stress, Sci. Signal., 3, ra88.

    Book  Google Scholar 

  71. Grune, T., Catalgol, B., Licht, A., Ermak, G., Pickering, A. M., Ngo, J. K., and Davies, K. J. A. (2011) HSP70 mediates dissociation and reassociation of the 26S protea–some during adaptation to oxidative stress, Free Radic. Biol. Med., 51, 1355–1364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tsvetkov, P., Myers, N., Eliav, R., Adamovich, Y., Hagai, T., Adler, J., Navon, A., and Shaul, Y. (2014) NADH binds and stabilizes the 26S proteasomes independent of ATP, J. Biol. Chem., 289, 11272–11281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Huang, Q., Wang, H., Perry, S. W., and Figueiredo–Pereira, M. E. (2013) Negative regulation of 26S proteasome stabil–ity via calpain–mediated cleavage of Rpn10 subunit upon mitochondrial dysfunction in neurons, J. Biol. Chem., 288, 12161–12174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Isasa, M., Katz, E. J., Kim, W., Yugo, V., Gonzalez, S., Kirkpatrick, D. S., Thomson, T. M., Finley, D., Gygi, S. P., and Crosas, B. (2010) Monoubiquitination of Rpn10 regu–lates substrate recruitment to the proteasome, Mol. Cell, 38, 733–745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kikuchi, J., Iwafune, Y., Akiyama, T., Okayama, A., Nakamura, H., Arakawa, N., Kimura, Y., and Hirano, H. (2010) Co–and post–translational modifications of the 26S proteasome in yeast, Proteomics, 10, 2769–2779.

    Article  CAS  PubMed  Google Scholar 

  76. Hirano, H., Kimura, Y., and Kimura, A. (2016) Biological significance of co–and post–translational modifications of the yeast 26S proteasome, J. Proteomics, 134, 37–46.

    Article  CAS  PubMed  Google Scholar 

  77. Cho–Park, P. F., and Steller, H. (2013) Proteasome regula–tion by ADP–ribosylation, Cell, 153, 614–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, F., Su, K., Yang, X., Bowe, D. B., Paterson, A. J., and Kudlow, J. E. (2003) O–GlcNAc modification is an endogenous inhibitor of the proteasome, Cell, 115, 715–725.

    Article  CAS  PubMed  Google Scholar 

  79. Kimura, A., Kato, Y., and Hirano, H. (2012) N–myristoy–lation of the Rpt2 subunit regulates intracellular localiza–tion of the yeast 26S proteasome, Biochemistry, 51, 8856–8866.

    Article  CAS  PubMed  Google Scholar 

  80. Bose, S., Stratford, F. L. L., Broadfoot, K. I., Mason, G. G. F., and Rivett, A. J. (2004) Phosphorylation of 20S protea–some alpha subunit C8 (alpha7) stabilizes the 26S protea–some and plays a role in the regulation of proteasome com–plexes by gamma–interferon, Biochem. J., 378, 177–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schmidtke, G., Schregle, R., Alvarez, G., Huber, E. M., and Groettrup, M. (2017) The 20S immunoproteasome and constitutive proteasome bind with the same affinity to PA28αβ and equally degrade FAT10, Mol. Immunol., doi: 10.1016/j.molimm.2017.11.030.

    Book  Google Scholar 

  82. Djakovic, S. N., Marquez–Lona, E. M., Jakawich, S. K., Wright, R., Chu, C., Sutton, M. A., and Patrick, G. N. (2012) Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons, J. Neurosci., 32, 5126–5131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Djakovic, S. N., Schwarz, L. A., Barylko, B., DeMartino, G. N., and Patrick, G. N. (2009) Regulation of the protea–some by neuronal activity and calcium/calmodulin–dependent protein kinase II, J. Biol. Chem., 284, 26655–26665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jarome, T., Kwapis, J. L., Ruenzel, W. L., and Helmstetter, F. J. (2013) CaMKII, but not protein kinase A, regulates Rpt6 phosphorylation and proteasome activity during the forma–tion of long–term memories, Front. Behav. Neurosci., 7, 115.

    PubMed  PubMed Central  Google Scholar 

  85. Lokireddy, S., Kukushkin, N. V., and Goldberg, A. L. (2015) cAMP–induced phosphorylation of 26S protea–somes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins, Proc. Natl. Acad. Sci. USA, 112, 7176–7185.

    Google Scholar 

  86. Jacobson, A. D., MacFadden, A., Wu, Z., Peng, J., and Liu, C.–W. (2014) Autoregulation of the 26S proteasome by in situ ubiquitination, Mol. Biol. Cell, 25, 1824–1835.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Besche, H. C., Sha, Z., Kukushkin, N. V., Peth, A., Hock, E.–M., Kim, W., Gygi, S., Gutierrez, J. A., Liao, H., Dick, L., and Goldberg, A. L. (2014) Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiqui–tin conjugates, EMBO J., 33, 1159–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hoeller, D., Crosetto, N., Blagoev, B., Raiborg, C., Tikkanen, R., Wagner, S., Kowanetz, K., Breitling, R., Mann, M., Stenmark, H., and Dikic, I. (2006) Regulation of ubiquitin–binding proteins by monoubiquitination, Nat. Cell Biol., 8, 163–169.

    Article  CAS  PubMed  Google Scholar 

  89. Cascio, P., Call, M., Petre, B. M., Walz, T., and Goldberg, A. L. (2002) Properties of the hybrid form of the 26S pro–teasome containing both 19S and PA28 complexes, EMBO J., 21, 2636–2645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tanahashi, N., Yokota, K., Ahn, J. Y., Chung, C. H., Fujiwara, T., Takahashi, E., DeMartino, G. N., Slaughter, C. A., Toyonaga, T., Yamamura, K., Shimbara, N., and Tanaka, K. (1997) Molecular properties of the proteasome activator PA28 family proteins and gamma–interferon reg–ulation, Genes Cells, 2, 195–211.

    Article  CAS  PubMed  Google Scholar 

  91. Ossendorp, F., Fu, N., Camps, M., Granucci, F., Gobin, S. J. P., van den Elsen, P. J., Schuurhuis, D., Adema, G. J., Lipford, G. B., Chiba, T., Sijts, A., Kloetzel, P.–M., Ricciardi–Castagnoli, P., and Melief, C. J. M. (2005) Differential expression regulation of the alpha and beta subunits of the PA28 proteasome activator in mature den–dritic cells, J. Immunol., 174, 7815–7822.

    Article  CAS  PubMed  Google Scholar 

  92. Li, J., Powell, S. R., and Wang, X. (2011) Enhancement of proteasome function by PA28α overexpression protects against oxidative stress, FASEB J., 25, 883–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Raule, M., Cerruti, F., Benaroudj, N., Migotti, R., Kikuchi, J., Bachi, A., Navon, A., Dittmar, G., and Cascio, P. (2014) PA28αβ reduces size and increases hydrophilicity of 20S immunoproteasome peptide prod–ucts, Chem. Biol., 21, 470–480.

    Article  CAS  PubMed  Google Scholar 

  94. Li, X., Amazit, L., Long, W., Lonard, D. M., Monaco, J. J., and O’Malley, B. W. (2007) Ubiquitin–and ATP–inde–pendent proteolytic turnover of p21 by the REGgamma–proteasome pathway, Mol. Cell, 26, 831–842.

    Article  CAS  PubMed  Google Scholar 

  95. Pickering, A. M., and Davies, K. J. A. (2012) Differential roles of proteasome and immunoproteasome regulators Pa28αβ, Pa28γ and Pa200 in the degradation of oxidized proteins, Arch. Biochem. Biophys., 523, 181–190.

    Article  CAS  PubMed  Google Scholar 

  96. Pickering, A. M., Koop, A. L., Teoh, C. Y., Ermak, G., Grune, T., and Davies, K. J. A. (2010) The immunoprotea–some, the 20S proteasome and the PA28αβ proteasome regulator are oxidative–stress–adaptive proteolytic com–plexes, Biochem. J., 432, 585–595.

    Article  CAS  PubMed  Google Scholar 

  97. Masson, P., Andersson, O., Petersen, U. M., and Young, P. (2001) Identification and characterization of a Drosophila nuclear proteasome regulator. A homolog of human 11S REGgamma (PA28gamma), J. Biol. Chem., 276, 1383–1390.

    Article  CAS  PubMed  Google Scholar 

  98. Li, X., Lonard, D. M., Jung, S. Y., Malovannaya, A., Feng, Q., Qin, J., Tsai, S. Y., Tsai, M.–J., and O’Malley, B. W. (2006) The SRC–3/AIB1 coactivator is degraded in a ubiquitin–and ATP–independent manner by the REGγ proteasome, Cell, 124, 381–392.

    Article  CAS  PubMed  Google Scholar 

  99. Moriishi, K., Okabayashi, T., Nakai, K., Moriya, K., Koike, K., Murata, S., Chiba, T., Tanaka, K., Suzuki, R., Suzuki, T., Miyamura, T., and Matsuura, Y. (2003) Proteasome activator PA28gamma–dependent nuclear retention and degradation of hepatitis C virus core protein, J. Virol., 77, 10237–10249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen, X., Barton, L. F., Chi, Y., Clurman, B. E., and Roberts, J. M. (2007) Ubiquitin–independent degradation of cell–cycle inhibitors by the REGγ proteasome, Mol. Cell, 26, 843–852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Murata, S., Kawahara, H., Tohma, S., Yamamoto, K., Kasahara, M., Nabeshima, Y., Tanaka, K., and Chiba, T. (1999) Growth retardation in mice lacking the proteasome activator PA28gamma, J. Biol. Chem., 274, 38211–38215.

    Article  CAS  PubMed  Google Scholar 

  102. Barton, L. F., Runnels, H. A., Schell, T. D., Cho, Y., Gibbons, R., Tevethia, S. S., Deepe, G. S., and Monaco, J. J. (2004) Immune defects in 28–kDa proteasome activa–tor gamma–deficient mice, J. Immunol., 172, 3948–3954.

    Article  CAS  PubMed  Google Scholar 

  103. Ustrell, V., Hoffman, L., Pratt, G., and Rechsteiner, M. (2002) PA200, a nuclear proteasome activator involved in DNA repair, EMBO J., 21, 3516–3525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Doherty, K., Pramanik, A., Pride, L., Lukose, J., and Wood Moore, C. (2004) Expression of the expanded YFL007w ORF and assignment of the gene name BLM10, Yeast, 21, 1021–1023.

    Article  CAS  PubMed  Google Scholar 

  105. Verma, R., Aravind, L., Oania, R., McDonald, W. H., Yates, J. R., Koonin, E. V., and Deshaies, R. J. (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome, Science, 298, 611–615.

    Article  CAS  PubMed  Google Scholar 

  106. Blickwedehl, J., McEvoy, S., Wong, I., Kousis, P., Clements, J., Elliott, R., Cresswell, P., Liang, P., and Bangia, N. (2007) Proteasomes and proteasome activator 200 kDa (PA200) accumulate on chromatin in response to ionizing radiation, Radiat. Res., 167, 663–674.

    Article  CAS  PubMed  Google Scholar 

  107. Sadre–Bazzaz, K., Whitby, F. G., Robinson, H., Formosa, T., and Hill, C. P. (2010) Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening, Mol. Cell, 37, 728–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Khor, B., Bredemeyer, A. L., Huang, C.–Y., Turnbull, I. R., Evans, R., Maggi, L. B., White, J. M., Walker, L. M., Carnes, K., Hess, R. A., and Sleckman, B. P. (2006) Proteasome activator PA200 is required for normal sper–matogenesis, Mol. Cell Biol., 26, 2999–3007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Blickwedehl, J., Agarwal, M., Seong, C., Pandita, R. K., Melendy, T., Sung, P., Pandita, T. K., and Bangia, N. (2008) Role for proteasome activator PA200 and postglu–tamyl proteasome activity in genomic stability, Proc. Natl. Acad. Sci. USA, 105, 16165–16170.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Qian, M.–X., Pang, Y., Liu, C. H., Haratake, K., Du, B.–Y., Ji, D.–Y., Wang, G.–F., Zhu, Q.–Q., Song, W., Yu, Y., Zhang, X.–X., Huang, H.–T., Miao, S., Chen, L.–B., Zhang, Z.–H., Liang, Y.–N., Liu, S., Cha, H., Yang, D., Zhai, Y., Komatsu, T., Tsuruta, F., Li, H., Cao, C., Li, W., Li, G.–H., Cheng, Y., Chiba, T., Wang, L., Goldberg, A. L., Shen, Y., and Qiu, X.–B. (2013) Acetylation–mediated proteasomal degradation of core histones during DNA repair and spermatogenesis, Cell, 153, 1012–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Huang, L., Haratake, K., Miyahara, H., and Chiba, T. (2016) Proteasome activators, PA28γ and PA200, play indispensable roles in male fertility, Sci. Rep., 6, 23171.

    CAS  Google Scholar 

  112. Tar, K., Dange, T., Yang, C., Yao, Y., Bulteau, A.–L., Salcedo, E. F., Braigen, S., Bouillaud, F., Finley, D., and Schmidt, M. (2014) Proteasomes associated with the Blm10 activator protein antagonize mitochondrial fission through degradation of the fission protein Dnm1, J. Biol. Chem., 289, 12145–12156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lopez, A. D., Tar, K., Krugel, U., Dange, T., Ros, I. G., and Schmidt, M. (2011) Proteasomal degradation of Sfp1 contributes to the repression of ribosome biogenesis during starvation and is mediated by the proteasome activator Blm10, Mol. Biol. Cell, 22, 528–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zaiss, D. M., Standera, S., Holzhutter, H., Kloetzel, P., and Sijts, A. J. (1999) The proteasome inhibitor PI31 com–petes with PA28 for binding to 20S proteasomes, FEBS Lett., 457, 333–338.

    Article  CAS  PubMed  Google Scholar 

  115. Zaiss, D. M. W., Standera, S., Kloetzel, P.–M., and Sijts, A. J. A. M. (2002) PI31 is a modulator of proteasome for–mation and antigen processing, Proc. Natl. Acad. Sci. USA, 99, 14344–14349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. De La Mota–Peynado, A., Lee, S. Y.–C., Pierce, B. M., Wani, P., Singh, C. R., and Roelofs, J. (2013) The protea–some–associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the pro–teasome, J. Biol. Chem., 288, 29467–29481.

    Article  CAS  Google Scholar 

  117. Lehmann, A., Niewienda, A., Jechow, K., Janek, K., and Enenkel, C. (2010) Ecm29 fulfils quality control functions in proteasome assembly, Mol. Cell, 38, 879–888.

    Article  CAS  PubMed  Google Scholar 

  118. Park, S., Kim, W., Tian, G., Gygi, S. P., and Finley, D. (2011) Structural defects in the regulatory particle–core particle interface of the proteasome induce a novel proteasome stress response, J. Biol. Chem., 286, 36652–36666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Marshall, R. S., Li, F., Gemperline, D. C., Book, A. J., and Vierstra, R. D. (2015) Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in arabidopsis, Mol. Cell, 58, 1053–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Marshall, R. S., McLoughlin, F., and Vierstra, R. D. (2016) Autophagic turnover of inactive 26S proteasomes in yeast is directed by the ubiquitin receptor Cue5 and the Hsp42 chaperone, Cell Rep., 16, 1717–1732.

    Article  CAS  PubMed  Google Scholar 

  121. Waite, K. A., Mota–Peynado, A. D.–L., Vontz, G., and Roelofs, J. (2016) Starvation induces proteasome autophagy with different pathways for core and regulatory particles, J. Biol. Chem., 291, 3239–3253.

    Article  CAS  PubMed  Google Scholar 

  122. Prakash, S., Tian, L., Ratliff, K. S., Lehotzky, R. E., and Matouschek, A. (2004) An unstructured initiation site is required for efficient proteasome–mediated degradation, Nat. Struct. Mol. Biol., 11, 830–837.

    Article  CAS  PubMed  Google Scholar 

  123. Schulman, B. A., and Wade Harper, J. (2009) Ubiquitin–like protein activation by E1 enzymes: the apex for down–stream signalling pathways, Nat. Rev. Mol. Cell Biol., 10, 319–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pierce, N. W., Kleiger, G., Shan, S., and Deshaies, R. J. (2009) Detection of sequential polyubiquitylation on a millisecond timescale, Nature, 462, 615–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ciechanover, A., and Stanhill, A. (2014) The complexity of recognition of ubiquitinated substrates by the 26S protea–some, Biochim. Biophys. Acta, 1843, 86–96.

    Article  CAS  PubMed  Google Scholar 

  126. Herhaus, L., and Dikic, I. (2015) Expanding the ubiquitin code through post–translational modification, EMBO Rep., 16, 1071–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Komander, D., Clague, M. J., and Urbe, S. (2009) Breaking the chains: structure and function of the deubiq–uitinases, Nat. Rev. Mol. Cell Biol., 10, 550–563.

    Article  CAS  PubMed  Google Scholar 

  128. Deshaies, R. J., and Joazeiro, C. A. P. (2009) RING domain E3 ubiquitin ligases, Annu. Rev. Biochem., 78, 399–434.

    Article  CAS  PubMed  Google Scholar 

  129. Rape, M., Reddy, S. K., and Kirschner, M. W. (2006) The processivity of multiubiquitination by the APC determines the order of substrate degradation, Cell, 124, 89–103.

    Article  CAS  PubMed  Google Scholar 

  130. Kim, W., Bennett, E. J., Huttlin, E. L., Guo, A., Li, J., Possemato, A., Sowa, M. E., Rad, R., Rush, J., Comb, M. J., Harper, J. W., and Gygi, S. P. (2011) Systematic and quantitative assessment of the ubiquitin–modified pro–teome, Mol. Cell, 44, 325–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Saeki, Y., Kudo, T., Sone, T., Kikuchi, Y., Yokosawa, H., Toh–e, A., and Tanaka, K. (2009) Lysine 63–linked polyu–biquitin chain may serve as a targeting signal for the 26S proteasome, EMBO J., 28, 359–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shabek, N., Herman–Bachinsky, Y., Buchsbaum, S., Lewinson, O., Haj–Yahya, M., Hejjaoui, M., Lashuel, H. A., Sommer, T., Brik, A., and Ciechanover, A. (2012) The size of the proteasomal substrate determines whether its degradation will be mediated by mono–or polyubiquityla–tion, Mol. Cell, 48, 87–97.

    Article  CAS  PubMed  Google Scholar 

  133. Nathan, J. A., Kim, H. T., Ting, L., Gygi, S. P., and Goldberg, A. L. (2013) Why do cellular proteins linked to K63–polyubiquitin chains not associate with proteasomes? EMBO J., 32, 552–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ordureau, A., Munch, C., and Harper, J. W. (2015) Quantifying ubiquitin signaling, Mol. Cell, 58, 660–676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kaiser, S. E., Riley, B. E., Shaler, T. A., Trevino, R. S., Becker, C. H., Schulman, H., and Kopito, R. R. (2011) Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools, Nat. Methods., 8, 691–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Xu, P., Duong, D. M., Seyfried, N. T., Cheng, D., Xie, Y., Robert, J., Rush, J., Hochstrasser, M., Finley, D., and Peng, J. (2009) Quantitative proteomics reveals the func–tion of unconventional ubiquitin chains in proteasomal degradation, Cell, 137, 133–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lu, Y., Lee, B.–H., King, R. W., Finley, D., and Kirschner, M. W. (2015) Substrate degradation by the proteasome: a single–molecule kinetic analysis, Science, 348, 1250834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lu, Y., Wang, W., and Kirschner, M. W. (2015) Specificity of the anaphase–promoting complex: a single–molecule study, Science, 348, 1248737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kirkpatrick, D. S., Hathaway, N. A., Hanna, J., Elsasser, S., Rush, J., Finley, D., King, R. W., and Gygi, S. P. (2006) Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology, Nat. Cell Biol., 8, 700–710.

    Article  CAS  PubMed  Google Scholar 

  140. Martinez–Fonts, K., and Matouschek, A. (2016) A rapid and versatile method for generating proteins with defined ubiquitin chains, Biochemistry, 55, 1898–1908.

    Article  CAS  PubMed  Google Scholar 

  141. Flick, K., Ouni, I., Wohlschlegel, J. A., Capati, C., McDonald, W. H., Yates, J. R., and Kaiser, P. (2004) Proteolysis–independent regulation of the transcription factor Met4 by a single Lys 48–linked ubiquitin chain, Nat. Cell Biol., 6, 634–641.

    Article  CAS  PubMed  Google Scholar 

  142. Fishbain, S., Inobe, T., Israeli, E., Chavali, S., Yu, H., Kago, G., Babu, M. M., and Matouschek, A. (2015) Sequence composition of disordered regions fine–tunes protein half–life, Nat. Struct. Mol. Biol., 22, 214–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Meyer, H.–J., and Rape, M. (2014) Enhanced protein degradation by branched ubiquitin chains, Cell, 157, 910–921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Grice, G. L., Lobb, I. T., Weekes, M. P., Gygi, S. P., Antrobus, R., and Nathan, J. A. (2015) The proteasome distinguishes between heterotypic and homotypic lysine–11–linked polyubiquitin chains, Cell Rep., 12, 545–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Boname, J. M., Thomas, M., Stagg, H. R., Xu, P., Peng, J., and Lehner, P. J. (2010) Efficient internalization of MHC I requires lysine–11 and lysine–63 mixed linkage polyubiquitin chains, Traffic, 11, 210–220.

    Article  CAS  PubMed  Google Scholar 

  146. Dammer, E. B., Na, C. H., Xu, P., Seyfried, N. T., Duong, D. M., Cheng, D., Gearing, M., Rees, H., Lah, J. J., Levey, A. I., Rush, J., and Peng, J. (2011) Polyubiquitin linkage profiles in three models of proteolytic stress suggest the etiology of alzheimer disease, J. Biol. Chem., 286, 10457–10465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ohtake, F., Saeki, Y., Ishido, S., Kanno, J., and Tanaka, K. (2016) The K48–K63 branched ubiquitin chain regu–lates NF–κB signaling, Mol. Cell, 64, 251–266.

    Article  CAS  PubMed  Google Scholar 

  148. Yau, R. G., Doerner, K., Castellanos, E. R., Haakonsen, D. L., Werner, A., Wang, N., Yang, X. W., Martinez–Martin, N., Matsumoto, M. L., Dixit, V. M., and Rape, M. (2017) Assembly and function of heterotypic ubiquitin chains in cell–cycle and protein quality control, Cell, 171, 918–933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Saeki, Y., Isono, E., and Toh–E, A. (2005) Preparation of ubiquitinated substrates by the PY motif–insertion method for monitoring 26S proteasome activity, Methods Enzymol., 399, 215–227.

    Article  CAS  PubMed  Google Scholar 

  150. Thrower, J. S., Hoffman, L., Rechsteiner, M., and Pickart, C. M. (2000) Recognition of the polyubiquitin proteolytic signal, EMBO J., 19, 94–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Stieglitz, B., Rana, R. R., Koliopoulos, M. G., Morris–Davies, A. C., Schaeffer, V., Christodoulou, E., Howell, S., Brown, N. R., Dikic, I., and Rittinger, K. (2013) Structural basis for ligase–specific conjugation of linear ubiquitin chains by HOIP, Nature, 503, 422–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ikeda, F., Deribe, Y. L., Skanland, S. S., Stieglitz, B., Grabbe, C., Franz–Wachtel, M., van Wijk, S. J. L., Goswami, P., Nagy, V., Terzic, J., Tokunaga, F., Androulidaki, A., Nakagawa, T., Pasparakis, M., Iwai, K., Sundberg, J. P., Schaefer, L., Rittinger, K., Macek, B., and Dikic, I. (2011) SHARPIN forms a linear ubiquitin ligase complex regulating NF–κB activity and apoptosis, Nature, 471, 637–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gerlach, B., Cordier, S. M., Schmukle, A. C., Emmerich, C. H., Rieser, E., Haas, T. L., Webb, A. I., Rickard, J. A., Anderton, H., Wong, W. W.–L., Nachbur, U., Gangoda, L., Warnken, U., Purcell, A. W., Silke, J., and Walczak, H. (2011) Linear ubiquitination prevents inflammation and regulates immune signalling, Nature, 471, 591–596.

    Article  CAS  PubMed  Google Scholar 

  154. Tokunaga, F., Nakagawa, T., Nakahara, M., Saeki, Y., Taniguchi, M., Sakata, S., Tanaka, K., Nakano, H., and Iwai, K. (2011) SHARPIN is a component of the NF–κB–activating linear ubiquitin chain assembly complex, Nature, 471, 633–636.

    Article  CAS  PubMed  Google Scholar 

  155. Rivkin, E., Almeida, S. M., Ceccarelli, D. F., Juang, Y.–C., MacLean, T. A., Srikumar, T., Huang, H., Dunham, W. H., Fukumura, R., Xie, G., Gondo, Y., Raught, B., Gingras, A.–C., Sicheri, F., and Cordes, S. P. (2013) The linear ubiquitin–specific deubiquitinase gumby regulates angiogenesis, Nature, 498, 318–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kirisako, T., Kamei, K., Murata, S., Kato, M., Fukumoto, H., Kanie, M., Sano, S., Tokunaga, F., Tanaka, K., and Iwai, K. (2006) A ubiquitin ligase complex assembles lin–ear polyubiquitin chains, EMBO J., 25, 4877–4887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhao, S., and Ulrich, H. D. (2010) Distinct consequences of posttranslational modification by linear versus K63–linked polyubiquitin chains, Proc. Natl. Acad. Sci. USA, 107, 7704–7709.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Inn, K.–S., Gack, M. U., Tokunaga, F., Shi, M., Wong, L.–Y., Iwai, K., and Jung, J. U. (2011) Linear ubiquitin assembly complex negatively regulates RIG–I–and TRIM25–mediated type I interferon induction, Mol. Cell, 41, 354–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kliza, K., Taumer, C., Pinzuti, I., Franz–Wachtel, M., Kunzelmann, S., Stieglitz, B., Macek, B., and Husnjak, K. (2017) Internally tagged ubiquitin: a tool to identify lin–ear polyubiquitin–modified proteins by mass spectrometry, Nat. Methods, 14, 504–512.

    Article  CAS  PubMed  Google Scholar 

  160. Kravtsova–Ivantsiv, Y., Cohen, S., and Ciechanover, A. (2009) Modification by single ubiquitin moieties rather than polyubiquitination is sufficient for proteasomal processing of the p105 NF–kappaB precursor, Mol. Cell, 33, 496–504.

    Article  CAS  PubMed  Google Scholar 

  161. Braten, O., Livneh, I., Ziv, T., Admon, A., Kehat, I., Caspi, L. H., Gonen, H., Bercovich, B., Godzik, A., Jahandideh, S., Jaroszewski, L., Sommer, T., Kwon, Y. T., Guharoy, M., Tompa, P., and Ciechanover, A. (2016) Numerous proteins with unique characteristics are degrad–ed by the 26S proteasome following monoubiquitination, Proc. Natl. Acad. Sci. USA, 113, 4639–4647.

    Article  CAS  Google Scholar 

  162. Oshikawa, K., Matsumoto, M., Oyamada, K., and Nakayama, K. I. (2012) Proteome–wide identification of ubiquitylation sites by conjugation of engineered lysine–less ubiquitin, J. Proteome Res., 11, 796–807.

    Article  CAS  PubMed  Google Scholar 

  163. Swatek, K. N., and Komander, D. (2016) Ubiquitin mod–ifications, Nat. Publ. Gr., 26, 399–422.

    CAS  Google Scholar 

  164. Lee, B.–H., Lee, M. J., Park, S., Oh, D.–C., Elsasser, S., Chen, P.–C., Gartner, C., Dimova, N., Hanna, J., Gygi, S. P., Wilson, S. M., King, R. W., and Finley, D. (2010) Enhancement of proteasome activity by a small–molecule inhibitor of USP14, Nature, 467, 179–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. D’Arcy, P., Brnjic, S., Olofsson, M. H., Fryknas, M., Lindsten, K., De Cesare, M., Perego, P., Sadeghi, B., Hassan, M., Larsson, R., and Linder, S. (2011) Inhibition of proteasome deubiquitinating activity as a new cancer therapy, Nat. Med., 17, 1636–1640.

    Article  CAS  PubMed  Google Scholar 

  166. Kisselev, A. F., van der Linden, W. A., and Overkleeft, H. S. (2012) Proteasome inhibitors: an expanding army attacking a unique target, Chem. Biol., 19, 99–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. McCullough, J., Clague, M. J., and Urbe, S. (2004) AMSH is an endosome–associated ubiquitin isopeptidase, J. Cell Biol., 166, 487–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ambroggio, X. I., Rees, D. C., and Deshaies, R. J. (2004) JAMM: a metalloprotease–like zinc site in the proteasome and signalosome, PLoS Biol., 2, 113–119.

    Article  CAS  Google Scholar 

  169. Cope, G. A., Suh, G. S. B., Aravind, L., Schwarz, S. E., Zipursky, S. L., Koonin, E. V., and Deshaies, R. J. (2002) Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1, Science, 298, 608–611.

    Article  CAS  PubMed  Google Scholar 

  170. Shrestha, R. K., Ronau, J. A., Davies, C. W., Guenette, R. G., Strieter, E. R., Paul, L. N., and Das, C. (2014) Insights into the mechanism of deubiquitination by JAMM deubiq–uitinases from cocrystal structures of the enzyme with the substrate and product, Biochemistry, 53, 3199–3217.

    Article  CAS  PubMed  Google Scholar 

  171. Rinaldi, T., Pick, E., Gambadoro, A., Zilli, S., Maytal–Kivity, V., Frontali, L., and Glickman, M. H. (2004) Participation of the proteasomal lid subunit Rpn11 in mitochondrial morphology and function is mapped to a distinct C–terminal domain, Biochem. J., 381, 275–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Worden, E. J., Padovani, C., and Martin, A. (2014) Structure of the Rpn11–Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degrada–tion, Nat. Struct. Mol. Biol., 21, 220–227.

    Article  CAS  PubMed  Google Scholar 

  173. Lee, B.–H., Lu, Y., Prado, M. A., Shi, Y., Tian, G., Sun, S., Elsasser, S., Gygi, S. P., King, R. W., and Finley, D. (2016) USP14 deubiquitinates proteasome–bound sub–strates that are ubiquitinated at multiple sites, Nature, 532, 398–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Worden, E. J., Padovani, C., and Martin, A. (2014) Structure of the Rpn11–Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degrada–tion, Nat. Struct. Mol. Biol., 21, 220–227.

    Article  CAS  PubMed  Google Scholar 

  175. Pathare, G. R., Nagy, I., Sledz, P., Anderson, D. J., Zhou, H.–J., Pardon, E., Steyaert, J., Forster, F., Bracher, A., and Baumeister, W. (2014) Crystal structure of the proteasomal deubiquitylation module Rpn8–Rpn11, Proc. Natl. Acad. Sci. USA, 111, 2984–2989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Dambacher, C. M., Worden, E. J., Herzik, M. A., Martin, A., and Lander, G. C. (2016) Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition, Elife, 5, e13027.

    Book  Google Scholar 

  177. Worden, E. J., Dong, K. C., and Martin, A. (2017) An AAA motor–driven mechanical switch in Rpn11 controls deubiquitination at the 26S proteasome, Mol. Cell, 67, 799–811.

    Article  CAS  PubMed  Google Scholar 

  178. Finley, D. (2009) Recognition and processing of ubiqui–tin–protein conjugates by the proteasome, Annu. Rev. Biochem., 78, 477–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Borodovsky, A., Kessler, B. M., Casagrande, R., Overkleeft, H. S., Wilkinson, K. D., and Ploegh, H. L. (2001) A novel active site–directed probe specific for deu–biquitylating enzymes reveals proteasome association of USP14, EMBO J., 20, 5187–5196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Hanna, J., Hathaway, N. A., Tone, Y., Crosas, B., Elsasser, S., Kirkpatrick, D. S., Leggett, D. S., Gygi, S. P., King, R. W., and Finley, D. (2006) Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degrada–tion, Cell, 127, 99–111.

    Article  CAS  PubMed  Google Scholar 

  181. Guterman, A., and Glickman, M. H. (2004) Complementary roles for Rpn11 and Ubp6 in deubiquiti–nation and proteolysis by the proteasome, J. Biol. Chem., 279, 1729–1738.

    Article  CAS  PubMed  Google Scholar 

  182. Leggett, D. S., Hanna, J., Borodovsky, A., Crosas, B., Schmidt, M., Baker, R. T., Walz, T., Ploegh, H., and Finley, D. (2002) Multiple associated proteins regulate proteasome structure and function, Mol. Cell, 10, 495–507.

    Article  CAS  PubMed  Google Scholar 

  183. Kim, H. T., and Goldberg, A. L. (2017) The deubiquiti–nating enzyme Usp14 allosterically inhibits multiple pro–teasomal activities and ubiquitin–independent proteolysis, J. Biol. Chem., 292, 9830–9839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Bashore, C., Dambacher, C. M., Goodall, E. A., Matyskiela, M. E., Lander, G. C., and Martin, A. (2015) Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome, Nat. Struct. Mol. Biol., 22, 712–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Aufderheide, A., Beck, F., Stengel, F., Hartwig, M., Schweitzer, A., Pfeifer, G., Goldberg, A. L., Sakata, E., Baumeister, W., and Forster, F. (2015) Structural charac–terization of the interaction of Ubp6 with the 26S protea–some, Proc. Natl. Acad. Sci. USA, 112, 8626–8631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Mansour, W., Nakasone, M. A., von Delbruck, M., Yu, Z., Krutauz, D., Reis, N., Kleifeld, O., Sommer, T., Fushman, D., and Glickman, M. H. (2015) Disassembly of Lys11 and mixed linkage polyubiquitin conjugates provides insights into function of proteasomal deubiqui–tinases Rpn11 and Ubp6, J. Biol. Chem., 290, 4688–4704.

    Article  CAS  PubMed  Google Scholar 

  187. Burgie, S. E., Bingman, C. A., Soni, A. B., and Phillips, G. N., Jr. (2012) Structural characterization of human Uch37, Proteins, 80, 649–654.

    Article  CAS  PubMed  Google Scholar 

  188. VanderLinden, R. T., Hemmis, C. W., Schmitt, B., Ndoja, A., Whitby, F. G., Robinson, H., Cohen, R. E., Yao, T., and Hill, C. P. (2015) Structural basis for the activation and inhibition of the UCH37 deubiquitylase, Mol. Cell, 57, 901–911.

    Article  CAS  Google Scholar 

  189. Sahtoe, D. D., van Dijk, W. J., El Oualid, F., Ekkebus, R., Ovaa, H., and Sixma, T. K. (2015) Mechanism of UCH–L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G, Mol. Cell, 57, 887–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Chen, X., Lee, B.–H., Finley, D., and Walters, K. J. (2010) Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2, Mol. Cell, 38, 404–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lam, Y. A., Xu, W., DeMartino, G. N., and Cohen, R. E. (1997) Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome, Nature, 385, 737–740.

    Article  CAS  PubMed  Google Scholar 

  192. Zhang, N.–Y., Jacobson, A. D., MacFadden, A., and Liu, C.–W. (2011) Ubiquitin chain trimming recycles the sub–strate binding sites of the 26S proteasome and promotes degradation of lysine 48–linked polyubiquitin conjugates, J. Biol. Chem., 286, 25540–25546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Chen, S., Wu, J., Lu, Y., Ma, Y.–B., Lee, B.–H., Yu, Z., Ouyang, Q., Finley, D. J., Kirschner, M. W., and Mao, Y. (2016) Structural basis for dynamic regulation of the human 26S proteasome, Proc. Natl. Acad. Sci. USA, 113, 12991–12996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Peth, A., Kukushkin, N., Bosse, M., and Goldberg, A. L. (2013) Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37 homologs, J. Biol. Chem., 288, 7781–7790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Swaminathan, S., Amerik, A. Y., and Hochstrasser, M. (1999) The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast, Mol. Biol. Cell, 10, 2583–2594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Varshavsky, A. (2012) The ubiquitin system, an immense realm, Annu. Rev. Biochem., 81, 167–176.

    Article  CAS  PubMed  Google Scholar 

  197. Crosas, B., Hanna, J., Kirkpatrick, D. S., Zhang, D. P., Tone, Y., Hathaway, N. A., Buecker, C., Leggett, D. S., Schmidt, M., King, R. W., Gygi, S. P. P., and Finley, D. (2006) Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activi–ties, Cell, 127, 1401–1413.

    Article  CAS  PubMed  Google Scholar 

  198. Tian, L., Holmgren, R. A., and Matouschek, A. (2005) A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF–κB, Nat. Struct. Mol. Biol., 12, 1045–1053.

    Article  CAS  PubMed  Google Scholar 

  199. Aviram, S., and Kornitzer, D. (2010) The ubiquitin ligase Hul5 promotes proteasomal processivity, Mol. Cell Biol., 30, 985–994.

    Article  CAS  PubMed  Google Scholar 

  200. Cappadocia, L., and Lima, C. D. (2018) Ubiquitin–like protein conjugation: structures, chemistry, and mecha–nism, Chem. Rev., 118, 889–918.

    Article  CAS  PubMed  Google Scholar 

  201. Jentsch, S., and Pyrowolakis, G. (2000) Ubiquitin and its kin: how close are the family ties? Trends Cell Biol., 10, 335–342.

    Article  CAS  PubMed  Google Scholar 

  202. Luders, J., Pyrowolakis, G., and Jentsch, S. (2003) The ubiquitin–like protein HUB1 forms SDS–resistant com–plexes with cellular proteins in the absence of ATP, EMBO Rep., 4, 1169–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Novatchkova, M., Bachmair, A., Eisenhaber, B., and Eisenhaber, F. (2005) Proteins with two SUMO–like domains in chromatin–associated complexes: the RENi (Rad60–Esc2–NIP45) family, BMC Bioinformatics, 6, 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Eifler, K., and Vertegaal, A. C. O. (2015) SUMOylation–mediated regulation of cell cycle progression and cancer, Trends Biochem. Sci., 40, 779–793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Flotho, A., and Melchior, F. (2013) Sumoylation: a regu–latory protein modification in health and disease, Annu. Rev. Biochem., 82, 357–385.

    Article  CAS  PubMed  Google Scholar 

  206. Schmidtke, G., Aichem, A., and Groettrup, M. (2014) FAT10ylation as a signal for proteasomal degradation, Biochim. Biophys. Acta, 1843, 97–102.

    Article  CAS  PubMed  Google Scholar 

  207. Aichem, A., Pelzer, C., Lukasiak, S., Kalveram, B., Sheppard, P. W., Rani, N., Schmidtke, G., and Groettrup, M. (2010) USE1 is a bispecific conjugating enzyme for ubiquitin and FAT10, which FAT10ylates itself in cis, Nat. Commun., 1, 1–10.

    Article  CAS  Google Scholar 

  208. Pelzer, C., and Groettrup, M. (2010) FAT10: activated by UBA6 and functioning in protein degradation, Subcell Biochem., 54, 238–246.

    Article  CAS  PubMed  Google Scholar 

  209. Canaan, A., DeFuria, J., Perelman, E., Schultz, V., Seay, M., Tuck, D., Flavell, R. A., Snyder, M. P., Obin, M. S., and Weissman, S. M. (2014) Extended lifespan and reduced adiposity in mice lacking the FAT10 gene, Proc. Natl. Acad. Sci. USA, 111, 5313–5318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Canaan, A., Yu, X., Booth, C. J., Lian, J., Lazar, I., Gamfi, S. L., Castille, K., Kohya, N., Nakayama, Y., Liu, Y.–C., Eynon, E., Flavell, R., and Weissman, S. M. (2006) FAT10/diubiquitin–like protein–deficient mice exhibit minimal phenotypic differences, Mol. Cell Biol., 26, 5180–5189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Buchsbaum, S., Bercovich, B., and Ciechanover, A. (2012) FAT10 is a proteasomal degradation signal that is itself reg–ulated by ubiquitination, Mol. Biol. Cell, 23, 225–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Fu, H., Sadis, S., Rubin, D. M., Glickman, M., van Nocker, S., Finley, D., and Vierstra, R. D. (1998) Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26S proteasome subunit Mcb1, J. Biol. Chem., 273, 1970–1981.

    Article  CAS  PubMed  Google Scholar 

  213. Lam, Y. A., Lawson, T. G., Velayutham, M., Zweier, J. L., and Pickart, C. M. (2002) A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal, Nature, 416, 763–767.

    Article  CAS  PubMed  Google Scholar 

  214. Paraskevopoulos, K., Kriegenburg, F., Tatham, M. H., Rosner, H. I., Medina, B., Larsen, I. B., Brandstrup, R., Hardwick, K. G., Hay, R. T., Kragelund, B. B., Hartmann–Petersen, R., and Gordon, C. (2014) Dss1 is a 26S proteasome ubiquitin receptor, Mol. Cell, 56, 453–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Deveraux, Q., Ustrell, V., Pickart, C., and Rechsteiner, M. (1994) A 26S protease subunit that binds ubiquitin conju–gates, J. Biol. Chem., 269, 7059–7061.

    CAS  PubMed  Google Scholar 

  216. Hamazaki, J., Hirayama, S., and Murata, S. (2015) Redundant roles of Rpn10 and Rpn13 in recognition of ubiquitinated proteins and cellular homeostasis, PLOS Genet., 11, e1005401.

    Book  Google Scholar 

  217. Matiuhin, Y., Kirkpatrick, D. S., Ziv, I., Kim, W., Dakshinamurthy, A., Kleifeld, O., Gygi, S. P., Reis, N., and Glickman, M. H. (2008) Extraproteasomal Rpn10 restricts access of the polyubiquitin–binding protein Dsk2 to proteasome, Mol. Cell, 32, 415–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Keren–Kaplan, T., Zeev Peters, L., Levin–Kravets, O., Attali, I., Kleifeld, O., Shohat, N., Artzi, S., Zucker, O., Pilzer, I., Reis, N., Glickman, M. H., Ben–Aroya, S., and Prag, G. (2016) Structure of ubiquitylated–Rpn10 provides insight into its autoregulation mechanism, Nat. Commun., 7, 12960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Kang, Y., Vossler, R. A., Diaz–Martinez, L. A., Winter, N. S., Clarke, D. J., and Walters, K. J. (2006) UBL/UBA ubiquitin receptor proteins bind a common tetraubiquitin chain, J. Mol. Biol., 356, 1027–1035.

    Article  CAS  PubMed  Google Scholar 

  220. Woelk, T., Oldrini, B., Maspero, E., Confalonieri, S., Cavallaro, E., Di Fiore, P. P., and Polo, S. (2006) Molecular mechanisms of coupled monoubiquitination, Nat. Cell Biol., 8, 1246–1254.

    Article  CAS  PubMed  Google Scholar 

  221. Verma, R., Oania, R., Graumann, J., and Deshaies, R. J. (2004) Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin–proteasome system, Cell, 118, 99–110.

    Article  CAS  PubMed  Google Scholar 

  222. Wang, Q., Young, P., and Walters, K. J. (2005) Structure of S5a bound to monoubiquitin provides a model for polyu–biquitin recognition, J. Mol. Biol., 348, 727–739.

    Article  CAS  PubMed  Google Scholar 

  223. Van Nocker, S., Sadis, S., Rubin, D. M., Glickman, M., Fu, H., Coux, O., Wefes, I., Finley, D., and Vierstra, R. D. (1996) The multiubiquitin–chain–binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate–specific role in protein turnover, Mol. Cell. Biol., 16, 6020–6028.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Hamazaki, J., Sasaki, K., Kawahara, H., Hisanaga, S.–I., Tanaka, K., and Murata, S. (2007) Rpn10–mediated degradation of ubiquitinated proteins is essential for mouse development, Mol. Cell. Biol., 27, 6629–6638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Al–Shami, A., Jhaver, K. G., Vogel, P., Wilkins, C., Humphries, J., Davis, J. J., Xu, N., Potter, D. G., Gerhardt, B., Mullinax, R., Shirley, C. R., Anderson, S. J., and Oravecz, T. (2010) Regulators of the proteasome pathway, Uch37 and Rpn13, play distinct roles in mouse development, PLoS One, 5, e13654.

    Google Scholar 

  226. Simins, A. B., Weighardt, H., Weidner, K. M., Weidle, U. H., and Holzmann, B. (1999) Functional cloning of ARM–1, an adhesion–regulating molecule upregulated in metastatic tumor cells, Clin. Exp. Metastasis, 17, 641–648.

    Article  CAS  PubMed  Google Scholar 

  227. Hamazaki, J., Iemura, S., Natsume, T., Yashiroda, H., Tanaka, K., and Murata, S. (2006) A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes, EMBO J., 25, 4524–4536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Yao, T., Song, L., Xu, W., DeMartino, G. N., Florens, L., Swanson, S. K., Washburn, M. P., Conaway, R. C., Conaway, J. W., and Cohen, R. E. (2006) Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1, Nat. Cell Biol., 8, 994–1002.

    Article  CAS  PubMed  Google Scholar 

  229. Mazumdar, T., Gorgun, F. M., Sha, Y., Tyryshkin, A., Zeng, S., Hartmann–Petersen, R., Jorgensen, J. P., Hendil, K. B., and Eissa, N. T. (2010) Regulation of NF–kappaB activity and inducible nitric oxide synthase by reg–ulatory particle non–ATPase subunit 13 (Rpn13), Proc. Natl. Acad. Sci. USA, 107, 13854–13859.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Huang, Y., and Ratovitski, E. A. (2010) Phospho–ΔNp63α/Rpn13–dependent regulation of LKB1 degrada–tion modulates autophagy in cancer cells, Aging (Albany. NY), 2, 959–968.

    Article  CAS  PubMed Central  Google Scholar 

  231. Sabio, G., Das, M., Mora, A., Zhang, Z., Jun, J. Y., Ko, H. J., Barrett, T., Kim, J. K., and Davis, R. J. (2008) A stress signaling pathway in adipose tissue regulates hepatic insulin resistance, Science, 322, 1539–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Aguileta, M. A., Korac, J., Durcan, T. M., Trempe, J.–F., Haber, M., Gehring, K., Elsasser, S., Waidmann, O., Fon, E. A., and Husnjak, K. (2015) The E3 ubiquitin ligase parkin is recruited to the 26S proteasome via the proteaso–mal ubiquitin receptor Rpn13, J. Biol. Chem., 290, 7492–7505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Miao, X., Miao, X., Wen, Y., Hu, J., Dai, W., and Yin, B. (2012) A possible connection between adhesion regulating molecule 1 overexpression and nuclear factor kappa B activity in hepatocarcinogenesis, Oncol. Rep., 28, 283–290.

    PubMed  Google Scholar 

  234. Song, Y., Ray, A., Li, S., Das, D. S., Tai, Y. T., Carrasco, R. D., Chauhan, D., and Anderson, K. C. (2016) Targeting proteasome ubiquitin receptor Rpn13 in multi–ple myeloma, Leukemia, 30, 1877–1886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Fejzo, M., Anderson, L., von Euw, E., Kalous, O., Avliyakulov, N., Haykinson, M., Konecny, G., Finn, R., and Slamon, D. (2013) Amplification target ADRM1: role as an oncogene and therapeutic target for ovarian cancer, Int. J. Mol. Sci., 14, 3094–3109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Carvalho, B., Postma, C., Mongera, S., Hopmans, E., Diskin, S., van de Wiel, M. A., van Criekinge, W., Thas, O., Matthai, A., Cuesta, M. A., Droste, J. S. T. S., Craanen, M., Schrock, E., Ylstra, B., and Meijer, G. A. (2009) Multiple putative oncogenes at the chromosome 20q amplicon contribute to colorectal adenoma to carci–noma progression, Gut, 58, 79–89.

    Article  CAS  PubMed  Google Scholar 

  237. Jang, S. H., Park, J. W., Kim, H. R., Seong, J. K., and Kim, H. K. (2014) ADRM1 gene amplification is a candi–date driver for metastatic gastric cancers, Clin. Exp. Metastasis, 31, 727–733.

    Article  CAS  PubMed  Google Scholar 

  238. Anchoori, R. K., Karanam, B., Peng, S., Wang, J. W., Jiang, R., Tanno, T., Orlowski, R. Z., Matsui, W., Zhao, M., Rudek, M. A., Hung, C., Chen, X., Walters, K. J., and Roden, R. B. S. (2013) A bis–benzylidine piperidone tar–geting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer, Cancer Cell, 24, 791–805.

    Article  CAS  PubMed  Google Scholar 

  239. Trader, D. J., Simanski, S., and Kodadek, T. (2015) A reversible and highly selective inhibitor of the proteasomal ubiquitin receptor Rpn13 is toxic to multiple myeloma cells, J. Am. Chem. Soc., 137, 6312–6319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Khan, M. L., and Stewart, A. K. (2011) Carfilzomib: a novel second–generation proteasome inhibitor, Futur. Oncol., 7, 607–612.

    Article  CAS  Google Scholar 

  241. Chen, X., Randles, L., Shi, K., Tarasov, S. G., Aihara, H., and Walters, K. J. (2016) Structures of Rpn1T1:Rad23 and hRpn13:hPLIC2 reveal distinct binding mechanisms between substrate receptors and shuttle factors of the pro–teasome, Structure, 24, 1257–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Saeki, Y., Sone, T., Toh–e, A., and Yokosawa, H. (2002) Identification of ubiquitin–like protein–binding subunits of the 26S proteasome, Biochem. Biophys. Res. Commun., 296, 813–819.

    Article  CAS  PubMed  Google Scholar 

  243. Gomez, T. A., Kolawa, N., Gee, M., Sweredoski, M. J., and Deshaies, R. J. (2011) Identification of a functional docking site in the Rpn1 LRR domain for the UBA–UBL domain protein Ddi1, BMC Biol., 9, 33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Haapasalo, A., Viswanathan, J., Kurkinen, K. M., Bertram, L., Soininen, H., Dantuma, N. P., Tanzi, R. E., and Hiltunen, M. (2011) Involvement of ubiquilin–1 tran–script variants in protein degradation and accumulation, Commun. Integr. Biol., 4, 428–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Raasi, S., Varadan, R., Fushman, D., and Pickart, C. M. (2005) Diverse polyubiquitin interaction properties of ubiquitin–associated domains, Nat. Struct. Mol. Biol., 12, 708–714.

    Article  CAS  PubMed  Google Scholar 

  246. Richly, H., Rape, M., Braun, S., Rumpf, S., Hoege, C., and Jentsch, S. (2005) A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting, Cell, 120, 73–84.

    Article  CAS  PubMed  Google Scholar 

  247. Kim, I., Ahn, J., Liu, C., Tanabe, K., Apodaca, J., Suzuki, T., and Rao, H. (2006) The Png1–Rad23 complex regu–lates glycoprotein turnover, J. Cell Biol., 172, 211–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Heessen, S., Masucci, M. G., and Dantuma, N. P. (2005) The UBA2 domain functions as an intrinsic stabilization signal that protects rad23 from proteasomal degradation, Mol. Cell, 18, 225–235.

    Article  CAS  PubMed  Google Scholar 

  249. Heinen, C., Acs, K., Hoogstraten, D., and Dantuma, N. P. (2011) C–terminal UBA domains protect ubiquitin receptors by preventing initiation of protein degradation, Nat. Commun., 2, 191.

    Article  CAS  PubMed  Google Scholar 

  250. Vadlamudi, R. K., Joung, I., Strominger, J. L., and Shin, J. (1996) p62, a phosphotyrosine–independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin–binding proteins, J. Biol. Chem., 271, 20235–20237.

    CAS  Google Scholar 

  251. Seibenhener, M. L., Babu, J. R., Geetha, T., Wong, H. C., Krishna, N. R., and Wooten, M. W. (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation, Mol. Cell. Biol., 24, 8055–8068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Pankiv, S., Clausen, T. H., Lamark, T., Brech, A., Bruun, J.–A., Outzen, H., Overvatn, A., Bjorkoy, G., and Johansen, T. (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated pro–tein aggregates by autophagy, J. Biol. Chem., 282, 24131–24145.

    CAS  Google Scholar 

  253. Johnson, J. O., Mandrioli, J., Benatar, M., Abramzon, Y., Van Deerlin, V. M., Trojanowski, J. Q., Gibbs, J. R., Brunetti, M., Gronka, S., Wuu, J., Ding, J., McCluskey, L., Martinez–Lage, M., Falcone, D., Hernandez, D. G., Arepalli, S., Chong, S., Schymick, J. C., Rothstein, J., Landi, F., Wang, Y.–D., Calvo, A., Mora, G., Sabatelli, M., Monsurro, M. R., Battistini, S., Salvi, F., Spataro, R., Sola, P., Borghero, G., Galassi, G., Scholz, S. W., Taylor, J. P., Restagno, G., Chio, A., Traynor, B. J., and Traynor, B. J. (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS, Neuron, 68, 857–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Madeo, F., Schlauer, J., Zischka, H., Mecke, D., and Frohlich, K. U. (1998) Tyrosine phosphorylation regulates cell cycle–dependent nuclear localization of Cdc48p, Mol. Biol. Cell, 9, 131–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Anderson, D. J., Le Moigne, R., Djakovic, S., Kumar, B., Rice, J., Wong, S., Wang, J., Yao, B., Valle, E., Kiss von Soly, S., Madriaga, A., Soriano, F., Menon, M.–K., Wu, Z. Y., Kampmann, M., Chen, Y., Weissman, J. S., Aftab, B. T., Yakes, F. M., Shawver, L., Zhou, H.–J., Wustrow, D., and Rolfe, M. (2015) Targeting the AAA ATPase p97 as an approach to treat cancer through disruption of pro–tein homeostasis, Cancer Cell, 28, 653–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Ye, Y. (2006) Diverse functions with a common regulator: ubiquitin takes command of an AAA ATPase, J. Struct. Biol., 156, 29–40.

    Article  CAS  PubMed  Google Scholar 

  257. Meyer, H., Bug, M., and Bremer, S. (2012) Emerging functions of the VCP/p97AAA–ATPase in the ubiquitin system, Nat. Cell Biol., 14, 117–123.

    Article  CAS  PubMed  Google Scholar 

  258. Beckwith, R., Estrin, E., Worden, E. J., and Martin, A. (2013) Reconstitution of the 26S proteasome reveals func–tional asymmetries in its AAA+ unfoldase, Nat. Struct. Mol. Biol., 20, 1164–1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Inobe, T., Fishbain, S., Prakash, S., and Matouschek, A. (2011) Defining the geometry of the two–component pro–teasome degron, Nat. Chem. Biol., 7, 161–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Babu, M. M., van der Lee, R., de Groot, N. S., and Gsponer, J. (2011) Intrinsically disordered proteins: regu–lation and disease, Curr. Opin. Struct. Biol., 21, 432–440.

    Article  CAS  PubMed  Google Scholar 

  261. Gsponer, J., Futschik, M. E., Teichmann, S. A., and Babu, M. M. (2008) Tight regulation of unstructured proteins: from transcript synthesis to protein degradation, Science, 322, 1365–1368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Tompa, P., Prilusky, J., Silman, I., and Sussman, J. L. (2008) Structural disorder serves as a weak signal for intra–cellular protein degradation, Proteins Struct. Funct. Bioinformatics, 71, 903–909.

    Article  CAS  Google Scholar 

  263. Yen, H.–C. S., Xu, Q., Chou, D. M., Zhao, Z., and Elledge, S. J. (2008) Global protein stability profiling in mammalian cells, Science, 322, 918–923.

    Article  CAS  PubMed  Google Scholar 

  264. Yen, H.–C. S., and Elledge, S. J. (2008) Identification of SCF ubiquitin ligase substrates by global protein stability profiling, Science, 322, 923–929.

    Article  CAS  PubMed  Google Scholar 

  265. Suskiewicz, M. J., Sussman, J. L., Silman, I., and Shaul, Y. (2011) Context–dependent resistance to proteolysis of intrinsically disordered proteins, Protein Sci., 20, 1285–1297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Radivojac, P., Vacic, V., Haynes, C., Cocklin, R. R., Mohan, A., Heyen, J. W., Goebl, M. G., and Iakoucheva, L. M. (2010) Identification, analysis, and prediction of protein ubiquitination sites, Proteins Struct. Funct. Bioinformatics, 78, 365–380.

    Article  CAS  Google Scholar 

  267. Hagai, T., Azia, A., Toth–Petroczy, A., and Levy, Y. (2011) Intrinsic disorder in ubiquitination substrates, J. Mol. Biol., 412, 319–324.

    Article  CAS  PubMed  Google Scholar 

  268. Hagai, T., and Levy, Y. (2010) Ubiquitin not only serves as a tag but also assists degradation by inducing protein unfolding, Proc. Natl. Acad. Sci. USA, 107, 2001–2006.

    Article  PubMed  PubMed Central  Google Scholar 

  269. Prakash, S., Inobe, T., Hatch, A. J., and Matouschek, A. (2009) Substrate selection by the proteasome during degra–dation of protein complexes, Nat. Chem. Biol., 5, 29–36.

    Article  CAS  PubMed  Google Scholar 

  270. Johnson, E. S., Gonda, D. K., and Varshavsky, A. (1990) Cis–trans recognition and subunit–specific degradation of short–lived proteins, Nature, 346, 287–291.

    Article  CAS  PubMed  Google Scholar 

  271. Hochstrasser, M., and Varshavsky, A. (1990) In vivo degra–dation of a transcriptional regulator: the yeast alpha 2 repressor, Cell, 61, 697–708.

    Article  CAS  PubMed  Google Scholar 

  272. Verma, R., McDonald, H., Yates, J. R., and Deshaies, R. J. (2001) Selective degradation of ubiquitinated Sic1 by purified 26S proteasome yields active S phase cyclin–Cdk, Mol. Cell, 8, 439–448.

    Article  CAS  PubMed  Google Scholar 

  273. Nasmyth, K., Shirayama, M., Toth, A., and Galova, M. (1999) APC(Cdc20) promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5, Nature, 402, 203–207.

    Article  PubMed  Google Scholar 

  274. Hoyt, M. A., Zich, J., Takeuchi, J., Zhang, M., Govaerts, C., and Coffino, P. (2006) Glycine–alanine repeats impair proper substrate unfolding by the proteasome, EMBO J., 25, 1720–1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Kravtsova–Ivantsiv, Y., Shomer, I., Cohen–Kaplan, V., Snijder, B., Superti–Furga, G., Gonen, H., Sommer, T., Ziv, T., Admon, A., Naroditsky, I., Jbara, M., Brik, A., Pikarsky, E., Kwon, Y. T., Doweck, I., and Ciechanover, A. (2015) KPC1–mediated ubiquitination and proteasomal processing of NF–κB1 p105 to p50 restricts tumor growth, Cell, 161, 333–347.

    Article  CAS  PubMed  Google Scholar 

  276. Baugh, J. M., Viktorova, E. G., and Pilipenko, E. V. (2009) Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitination, J. Mol. Biol., 386, 814–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Li, X., and Coffino, P. (1993) Degradation of ornithine decarboxylase: exposure of the C–terminal target by a polyamine–inducible inhibitory protein, Mol. Cell. Biol., 13, 2377–2383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Wu, D., Kaan, H. Y. K., Zheng, X., Tang, X., He, Y., Vanessa Tan, Q., Zhang, N., and Song, H. (2015) Structural basis of ornithine decarboxylase inactivation and accelerated degradation by polyamine sensor Antizyme1, Sci. Rep., 5, 14738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Bercovich, Z., Rosenberg–Hasson, Y., Ciechanover, A., and Kahana, C. (1989) Degradation of ornithine decar–boxylase in reticulocyte lysate is ATP–dependent but ubiq–uitin–independent, J. Biol. Chem., 264, 15949–15952.

    CAS  PubMed  Google Scholar 

  280. Takeuchi, J., Chen, H., and Coffino, P. (2007) Proteasome substrate degradation requires association plus extended peptide, EMBO J., 26, 123–131.

    Article  CAS  PubMed  Google Scholar 

  281. Bertolaet, B. L., Clarke, D. J., Wolff, M., Watson, M. H., Henze, M., Divita, G., and Reed, S. I. (2001) UBA domains of DNA damage–inducible proteins interact with ubiquitin, Nat. Struct. Biol., 8, 417–422.

    Article  CAS  PubMed  Google Scholar 

  282. Orlowski, M., and Wilk, S. (2000) Catalytic activities of the 20S proteasome, a multicatalytic proteinase complex, Arch. Biochem. Biophys., 383, 1–16.

    Article  CAS  PubMed  Google Scholar 

  283. Erales, J., and Coffino, P. (2014) Ubiquitin–independent proteasomal degradation, Biochim. Biophys. Acta, 1843, 216–221.

    Article  CAS  PubMed  Google Scholar 

  284. Pickering, A. M., and Davies, K. J. A. (2012) Degradation of damaged proteins–the main function of the 20S pro–teasome, Prog. Mol. Biol. Transl. Sci., 109, 227–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Van der Lee, R., Buljan, M., Lang, B., Weatheritt, R. J., Daughdrill, G. W., Dunker, A. K., Fuxreiter, M., Gough, J., Gsponer, J., Jones, D. T., Kim, P. M., Kriwacki, R. W., Oldfield, C. J., Pappu, R. V., Tompa, P., Uversky, V. N., Wright, P. E., and Babu, M. M. (2014) Classification of intrinsically disordered regions and proteins, Chem. Rev., 114, 6589–6631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Aiken, C. T., Kaake, R. M., Wang, X., and Huang, L. (2011) Oxidative stress–mediated regulation of proteasome complexes, Mol. Cell. Proteomics, 10, R110.006924.

    Google Scholar 

  287. Alvarez–Castelao, B., and Castano, J. G. (2005) Mechanism of direct degradation of IκBα by 20S protea–some, FEBS Lett., 579, 4797–4802.

    Article  CAS  PubMed  Google Scholar 

  288. Zhang, W., and Wei, Q. (2011) Calcineurin stimulates the expression of inflammatory factors in RAW 264.7 cells by interacting with proteasome subunit alpha type 6, Biochem. Biophys. Res. Commun., 407, 668–673.

    Article  CAS  PubMed  Google Scholar 

  289. Yuksek, K., Chen, W.–L., Chien, D., and Ou, J.–H. (2009) Ubiquitin–independent degradation of hepatitis C virus F protein, J. Virol., 83, 612–621.

    Article  CAS  PubMed  Google Scholar 

  290. Stohwasser, R., Holzhutter, H.–G., Lehmann, U., Henklein, P., and Kloetzel, P.–M. (2003) Hepatitis B virus HBx peptide 116–138 and proteasome activator PA28 compete for binding to the proteasome α4/MC6 subunit, Biol. Chem., 384, 39–49.

    Article  CAS  PubMed  Google Scholar 

  291. Dong, J., Chen, W., Welford, A., and Wandinger–Ness, A. (2004) The proteasome α–subunit XAPC7 interacts specif–ically with Rab7 and late endosomes, J. Biol. Chem., 279, 21334–21342.

    Article  CAS  PubMed  Google Scholar 

  292. Dachsel, J. C., Lucking, C. B., Deeg, S., Schultz, E., Lalowski, M., Casademunt, E., Corti, O., Hampe, C., Patenge, N., Vaupel, K., Yamamoto, A., Dichgans, M., Brice, A., Wanker, E. E., Kahle, P. J., and Gasser, T. (2005) Parkin interacts with the proteasome subunit α4, FEBS Lett., 579, 3913–3919.

    Article  CAS  PubMed  Google Scholar 

  293. Yang, L., Tang, Z., Zhang, H., Kou, W., Lu, Z., Li, X., Li, Q., and Miao, Z. (2013) PSMA7 directly interacts with NOD1 and regulates its function, Cell. Physiol. Biochem., 31, 952–959.

    Article  CAS  PubMed  Google Scholar 

  294. Touitou, R., Richardson, J., Bose, S., Nakanishi, M., Rivett, J., and Allday, M. J. (2001) A degradation signal located in the C–terminus of p21WAF1/CIP1 is a binding site for the C8 alpha–subunit of the 20S proteasome, EMBO J., 20, 2367–2375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Zhang, Z., Wang, H., Li, M., Agrawal, S., Chen, X., and Zhang, R. (2004) MDM2 is a negative regulator of p21WAF1/CIP1, independent of p53, J. Biol. Chem., 279, 16000–16006.

    Article  CAS  PubMed  Google Scholar 

  296. Yi, P., Feng, Q., Amazit, L., Lonard, D. M., Tsai, S. Y., Tsai, M.–J., and O’Malley, B. W. (2008) Atypical protein kinase C regulates dual pathways for degradation of the oncogenic coactivator SRC–3/AIB1, Mol. Cell, 29, 465–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Sdek, P., Ying, H., Chang, D. L. F., Qiu, W., Zheng, H., Touitou, R., Allday, M. J., and Jim Xiao, Z.–X. (2005) MDM2 promotes proteasome–dependent ubiquitin–inde–pendent degradation of retinoblastoma protein, Mol. Cell, 20, 699–708.

    Article  CAS  PubMed  Google Scholar 

  298. Alvarez–Castelao, B., Goethals, M., Vandekerckhove, J., and Castano, J. G. (2014) Mechanism of cleavage of alpha–synuclein by the 20S proteasome and modulation of its degradation by the RedOx state of the N–terminal methionines, Biochim. Biophys. Acta Mol. Cell Res., 1843, 352–365.

    Article  CAS  Google Scholar 

  299. Yuan, F., Ma, Y., You, P., Lin, W., Lu, H., Yu, Y., Wang, X., Jiang, J., Yang, P., Ma, Q., and Tao, T. (2013) A novel role of proteasomal β1 subunit in tumorigenesis, Biosci. Rep., 33, 555–565.

    Article  CAS  Google Scholar 

  300. Gruendler, C., Lin, Y., Farley, J., and Wang, T. (2001) Proteasomal degradation of Smad1 induced by bone morphogenetic proteins, J. Biol. Chem., 276, 46533–46543.

    Article  CAS  PubMed  Google Scholar 

  301. Jariel–Encontre, I., Bossis, G., and Piechaczyk, M. (2008) Ubiquitin–independent degradation of proteins by the pro–teasome, Biochim. Biophys. Acta, 1786, 153–177.

    PubMed  Google Scholar 

  302. Adler, J., Reuven, N., Kahana, C., and Shaul, Y. (2010) c–Fos proteasomal degradation is activated by a default mechanism, and its regulation by NAD(P)H:quinone oxi–doreductase 1 determines c–Fos serum response kinetics, Mol. Cell. Biol., 30, 3767–3778.

    CAS  Google Scholar 

  303. Pakay, J. L., Diesch, J., Gilan, O., Yip, Y.–Y., Sayan, E., Kolch, W., Mariadason, J. M., Hannan, R. D., Tulchinsky, E., and Dhillon, A. S. (2012) A 19S proteaso–mal subunit cooperates with an ERK MAPK–regulated degron to regulate accumulation of Fra–1 in tumour cells, Oncogene, 31, 1817–1824.

    Article  CAS  PubMed  Google Scholar 

  304. Kuzina, E. S., Chernolovskaya, E. L., Kudriaeva, A. A., Zenkova, M. A., Knorre, V. D., Surina, E. A., Ponomarenko, N. A., Bobik, T. V., Smirnov, I. V., Bacheva, A. V., Belogurov, A. A., Gabibov, A. G., and Vlasov, V. V. (2013) Immunoproteasome enhances intra–cellular proteolysis of myelin basic protein, Dokl. Biochem. Biophys., 453, 300–303.

    Article  CAS  PubMed  Google Scholar 

  305. Belogurov, A., Kudriaeva, A., Kuzina, E., Smirnov, I., Bobik, T., Ponomarenko, N., Kravtsova–Ivantsiv, Y., Ciechanover, A., and Gabibov, A. (2014) Multiple sclero–sis autoantigen myelin basic protein escapes control by ubiquitination during proteasomal degradation, J. Biol. Chem., 289, 17758–17766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Belogurov, A., Kuzina, E., Kudriaeva, A., Kononikhin, A., Kovalchuk, S., Surina, Y., Smirnov, I., Lomakin, Y., Bacheva, A., Stepanov, A., Karpova, Y., Lyupina, Y., Kharybin, O., Melamed, D., Ponomarenko, N., Sharova, N., Nikolaev, E., and Gabibov, A. (2015) Ubiquitin–inde–pendent proteosomal degradation of myelin basic protein contributes to development of neurodegenerative autoim–munity, FASEB J., 29, 1901–1913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Kuzina, E., Kudriaeva, A., Smirnov, I., Dubina, M. V., Gabibov, A., and Belogurov, A. (2014) Glatiramer acetate and nanny proteins restrict access of the multiple sclerosis autoantigen myelin basic protein to the 26S proteasome, Biomed. Res. Int., 2014, 926394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Raule, M., Cerruti, F., and Cascio, P. (2014) Enhanced rate of degradation of basic proteins by 26S immunopro–teasomes, Biochim. Biophys. Acta, 1843, 1942–1947.

    Article  CAS  PubMed  Google Scholar 

  309. Dange, T., Smith, D., Noy, T., Rommel, P. C., Jurzitza, L., Cordero, R. J. B., Legendre, A., Finley, D., Goldberg, A. L., and Schmidt, M. (2011) Blm10 protein promotes proteasomal substrate turnover by an active gating mecha–nism, J. Biol. Chem., 286, 42830–42839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Melo, S. P., Barbour, K. W., and Berger, F. G. (2011) Cooperation between an intrinsically disordered region and a helical segment is required for ubiquitin–independ–ent degradation by the proteasome, J. Biol. Chem., 286, 36559–36567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Singh Gautam, A. K., Balakrishnan, S., and Venkatraman, P. (2012) Direct ubiquitin independent recognition and degradation of a folded protein by the eukaryotic protea–somes–origin of intrinsic degradation signals, PLoS One, 7, e34864.

    Google Scholar 

  312. Alfassy, O. S., Cohen, I., Reiss, Y., Tirosh, B., and Ravid, T. (2013) Placing a disrupted degradation motif at the C terminus of proteasome substrates attenuates degradation without impairing ubiquitylation, J. Biol. Chem., 288, 12645–12653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Tsvetkov, P., Reuven, N., and Shaul, Y. (2009) The nanny model for IDPs, Nat. Chem. Biol., 5, 778–781.

    Article  CAS  PubMed  Google Scholar 

  314. Wang, X. J., Yu, J., Wong, S. H., Cheng, A. S., Chan, F. K., Ng, S. S., Cho, C. H., Sung, J. J., and Wu, W. K. (2013) A novel crosstalk between two major protein degra–dation systems, Autophagy, 9, 1500–1508.

    Article  CAS  PubMed  Google Scholar 

  315. Qiao, L., and Zhang, J. (2009) Inhibition of lysosomal functions reduces proteasomal activity, Neurosci. Lett., 456, 15–19.

    Article  CAS  PubMed  Google Scholar 

  316. Korolchuk, V. I., Mansilla, A., Menzies, F. M., and Rubinsztein, D. C. (2009) Autophagy inhibition compro–mises degradation of ubiquitin–proteasome pathway sub–strates, Mol. Cell, 33, 517–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Gao, Z., Gammoh, N., Wong, P.–M., Erdjument–Bromage, H., Tempst, P., and Jiang, X. (2010) Processing of autophagic protein LC3 by the 20S proteasome, Autophagy, 6, 126–137.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kudriaeva.

Additional information

Russian Text © A. A. Kudriaeva, A. A. Belogurov, 2019, published in Uspekhi Biologicheskoi Khimii, 2019, Vol. 59, pp. 323–392.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudriaeva, A.A., Belogurov, A.A. Proteasome: a Nanomachinery of Creative Destruction. Biochemistry Moscow 84 (Suppl 1), 159–192 (2019). https://doi.org/10.1134/S0006297919140104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919140104

Keywords

Navigation