Skip to main content
Log in

Multimodal Optical Diagnostics of Glycated Biological Tissues

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a metabolic disorder characterized by chronic hyperglycemia accompanied by the disruption of carbohydrate, lipid, and proteins metabolism and development of long-term microvascular, macrovascular, and neuropathic changes. This review presents the results of spectroscopic studies on the glycation of tissues and cell proteins in organisms with naturally developing and model diabetes and in vitro glycated samples in a wide range of electromagnetic waves, from visible light to terahertz radiation. Experiments on the refractometric measurements of glycated and oxygenated hemoglobin in broad wavelength and temperature ranges using digital holographic microscopy and diffraction tomography are discussed, as well as possible application of these methods in the diabetes diagnostics. It is shown that the development and implementation of multimodal approaches based on a combination of phase diagnostics with other methods is another promising direction in the diabetes diagnostics. The possibilities of using optical clearing agents for monitoring the diffusion of substances in the glycated tissues and blood flow dynamics in the pancreas of animals with induced diabetes have also been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AGEs:

advanced glycation end-products

CARS:

coherent anti-Stokes Raman scattering

HbA1c:

glycated (glycosylated) hemoglobin

HbO2 :

oxyhemoglobin

IR:

infrared

KKT:

Kramers–Kronig transform

MWPLS:

moving window partial least squares

NIR:

near-infrared

OCM:

optical coherence microscopy

OCT:

optical coherence tomography

References

  1. Zouaghi, W., Thomson, M. D., Rabia, K., Hahn, R., Blank, V., and Roskos, H. G. (2013) Broadband terahertz spectroscopy: principles, fundamental research and poten–tial for industrial applications, Eur. J. Phys., 34, S179.

    Google Scholar 

  2. Calcutt, N. A., Cooper, M. E., Kern, T. S., and Schmidt, A. M. (2009) Therapies for hyperglycaemia–induced diabetic complications: from animal models to clinical trials, Nat. Rev. Drug Discov., 8, 417–429.

    Article  CAS  PubMed  Google Scholar 

  3. Vigneshwaran, N., Bijukumar, G., Karmakar, N., Anand, S., and Misra, A. (2005) Autofluorescence characterization of advanced glycation end products of hemoglobin, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 61, 163–170.

    Article  CAS  Google Scholar 

  4. Gelikonov, V. M., and Gelikonov, G. V. (2006) New approach to cross–polarized optical coherence tomography based on orthogonal arbitrarily polarized modes, Laser Phys. Lett., 3, 445–451.

    Article  Google Scholar 

  5. Tuchin, V. V., Wang, R. K., Galanzha, E. I., Elder, J. B., and Zhestkov, D. M. (2004) Monitoring of glycated hemo–globin by OCT measurement of refractive index, Proc. SPIE, 5316, 66–78.

    Article  Google Scholar 

  6. Khalil, O. S. (1999) Spectroscopic and clinical aspects of noninvasive glucose measurements, Clin. Chem., 45, 165–177.

    CAS  PubMed  Google Scholar 

  7. Pavillon, N., Fujita, K., and Smith, N. I. (2014) Multimodal label–free microscopy, J. Innov. Opt. Health Sci., 7, 1330009.

    Article  Google Scholar 

  8. Streets, A. M., Li, A., Chen, T., and Huang, Y. (2014) Imaging without fluorescence: nonlinear optical microscopy for quantitative cellular imaging, Anal. Chem., 86, 8506–8513.

    Article  CAS  PubMed  Google Scholar 

  9. Edelman, S. V., and Polonsky, W. H. (2017) Type 2 diabetes in the real world: the elusive nature of glycemic control, Diabetes Care, 40, 1425–1432.

    Article  PubMed  Google Scholar 

  10. Brownlee, M. (2001) Biochemistry and molecular cell biol–ogy of diabetic complications, Nature, 414, 813–820.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, Q., Ames, J. M., Smith, R. D., Baynes, J. W., and Metz, T. O. (2008) A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease, J. Proteome Res., 8, 754–769.

    Article  CAS  Google Scholar 

  12. Lapolla, A., Fedele, D., Reitano, R., Bonfante, L., Guizzo, M., Seraglia, R., Tubaro, M., and Traldi, P. (2005) Mass spectrometric study of in vivo production of advanced gly–cation end–products/peptides, J. Mass Spectrom., 40, 969–972.

    Article  CAS  PubMed  Google Scholar 

  13. Ahmed, N. (2005) Advanced glycation endproducts—role in pathology of diabetic complications, Diabetes Res. Clin. Pract., 67, 3–21.

    Article  CAS  PubMed  Google Scholar 

  14. Kalousova, M., Skrha, J., and Zima, T. (2002) Advanced glycation end–products and advanced oxidation protein products in patients with diabetes mellitus, Physiol. Res., 51, 597–604.

    CAS  PubMed  Google Scholar 

  15. Dedov, I. I. (2010) Diabetes mellitus: development of tech–nologies in diagnostics, treatment and prevention, Diabetes Mellitus, 13, 6–13.

    Article  Google Scholar 

  16. Fanali, G., di Masi, A., Trezza, V., Marino, M., Fasano, M., and Ascenzi, P. (2012) Human serum albumin: from bench to bedside, Mol. Aspects Med., 33, 209–290.

    Article  CAS  PubMed  Google Scholar 

  17. Cherkasova, O., Nazarov, M., and Shkurinov, A. (2016) Noninvasive blood glucose monitoring in the terahertz fre–quency range, Opt. Quantum Electron., 48, 217.

    Article  CAS  Google Scholar 

  18. Mallya, M., Shenoy, R., Kodyalamoole, G., Biswas, M., Karumathil, J., and Kamath, S. (2013) Absorption spec–troscopy for the estimation of glycated hemoglobin (HbA1c) for the diagnosis and management of diabetes mellitus: a pilot study, Photomed. Laser Surg., 31, 219–224.

    Article  CAS  PubMed  Google Scholar 

  19. Tuchina, D. K., Shi, R., Bashkatov, A. N., Genina, E. A., Zhu, D., Luo, Q., and Tuchin, V. V. (2015) Ex vivo optical measurements of glucose diffusion kinetics in native and diabetic mouse skin, J. Biophotonics, 8, 332–346.

    Article  CAS  PubMed  Google Scholar 

  20. Tuchina, D. K., Bashkatov, A. N., Bucharskaya, A. B., Genina, E. A., and Tuchin, V. V. (2017) Study of glycerol diffusion in skin and myocardium ex vivo under the condi–tions of developing alloxan–induced diabetes, J. Biomed. Photonics Eng., 3, 20302.

    Article  Google Scholar 

  21. Zhernovaya, O. S., Tuchin, V. V., and Meglinski, I. V. (2008) Monitoring of blood proteins glycation by refractive index and spectral measurements, Laser Phys. Lett., 5, 460–464.

    Article  CAS  Google Scholar 

  22. Lazareva, E. N., Tuchin, V. V., and Meglinski, I. V. (2008) Measurements of absorbance of hemoglobin solutions incubated with glucose, in Saratov Fall Meeting 2007: Optical Technologies in Biophysics and Medicine IX, Proc. SPIE, 6791, 67910O.

    Article  CAS  Google Scholar 

  23. Giacco, F., and Brownlee, M. (2010) Oxidative stress and diabetic complications, Circ. Res., 107, 1058–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Larin, K. V., Ghosn, M. G., Ivers, S. N., Tellez, A., and Granada, J. F. (2006) Quantification of glucose diffusion in arterial tissues by using optical coherence tomography, Laser Phys. Lett., 4, 312–317.

    Article  CAS  Google Scholar 

  25. Galanzha, E. I., Solovieva, A. V., Tuchin, V. V., Wang, R. K., and Proskurin, S. G. (2003) Application of optical coherence tomography for diagnosis and measurements of glycated hemoglobin, in Eur. Conf. on Biomedical Optics, Proc. SPIE, 5140, 5140_125.

    Google Scholar 

  26. Okamoto, F., Sone, H., Nonoyama, T., and Hommura, S. (2000) Refractive changes in diabetic patients during inten–sive glycaemic control, Br. J. Ophthalmol., 84, 1097–1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mazarevica, G., Freivalds, T., and Jurka, A. (2002) Properties of erythrocyte light refraction in diabetic patients, J. Biomed. Opt., 7, 244–248.

    Article  PubMed  Google Scholar 

  28. Tuchin, V. V., Xu, X., and Wang, R. K. (2002) Dynamic optical coherence tomography in studies of optical clear–ing, sedimentation, aggregation of immersed blood, Appl. Opt., 41, 258–271.

    Article  CAS  PubMed  Google Scholar 

  29. Zhernovaya, O. S., Tuchin, V. V., and Wang, R. K. (2006) Comparable application of the OCT and Abbe refractome–ters for measurements of glycated hemoglobin portion in blood, in Complex Dynamics and Fluctuations in Biomedical Photonics III, Proc. SPIE, 6085, 608507.

    Article  CAS  Google Scholar 

  30. Gonchukov, S. A., and Lazarev, Y. B. (2003) Laser refrac–tometry in medicine and biology, Laser Phys., 13, 749–755.

    Google Scholar 

  31. Gonchukov, S., Vakurov, M., and Yermachenko, V. (2006) Precise laser refractometry of liquids, Laser Phys. Lett., 3, 314–318.

    Article  CAS  Google Scholar 

  32. Tavousi, A., Rakhshani, M. R., and Mansouri–Birjandi, M. A. (2018) High sensitivity label–free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all–circular photonic crystal ring res–onators, Opt. Commun., 429, 166–174.

    Article  CAS  Google Scholar 

  33. Rowe, D. J., Smith, D., and Wilkinson, J. S. (2017) Complex refractive index spectra of whole blood and aque–ous solutions of anticoagulants, analgesics and buffers in the mid–infrared, Sci. Rep., 7, 7356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lazareva, E. N., Zyubin, A. Y., Samusev, I. G., Slezhkin, V. A., Kochubey, V. I., and Tuchin, V. V. (2018) Refraction, fluorescence and Raman spectroscopy of normal and gly–cated hemoglobin, in Biophotonics: Photonic Solutions for Better Health Care VI, Proc. SPIE, 10685, 1068540.

    Google Scholar 

  35. Hosking, S. P. M., Bhatia, R., Crock, P. A., Wright, I., Squance, M. L., and Reeves, G. (2013) Non–invasive detection of microvascular changes in a paediatric and ado–lescent population with type 1 diabetes: a pilot cross–sec–tional study, BMC Endocr. Disord., 13, 41.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Vallance, P. (2001) Importance of asymmetrical dimethy–larginine in cardiovascular risk, Lancet, 358, 2096–2097.

    Article  CAS  PubMed  Google Scholar 

  37. Bonetti, P. O., Lerman, L. O., and Lerman, A. (2003) Endothelial dysfunction: a marker of atherosclerotic risk Arterioscler, Thromb. Vasc. Biol., 23, 168–175.

    Article  CAS  Google Scholar 

  38. Nathan, D. M. (1993) Long–term complications of dia–betes mellitus, N. Engl. J. Med., 328, 1676–1685.

    Article  CAS  PubMed  Google Scholar 

  39. Hernandez–Cardoso, G. G., Rojas–Landeros, S. C., Alfaro–Gomez, M., Hernandez–Serrano, A. I., Salas–Gutierrez, I., Lemus–Bedolla, E., Castillo–Guzman, A. R., Lopez–Lemus, H. L., and Castro–Camu, E. (2017) Terahertz imaging for early screening of diabetic foot syn–drome: a proof of concept, Sci. Rep., 7, 42124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Erokhin, A. I., Morachevskii, N. V., and Faizullov, F. S. (1978) Temperature dependence of the refractive index in condensed media, Sov. J. Exp. Theor. Phys., 47, 699.

    Google Scholar 

  41. Volkenshtein, M. V. (1951) Molecular Optics [in Russian], GITTL, Moscow–Leningrad.

    Google Scholar 

  42. Talaykova, N. A., Kalyanov, A. L., Lychagov, V. V., Ryabukho, V. P., and Malinova, L. I. (2013) Change dynamics of RBC morphology after injection glucose for diabetes by diffraction phase microscope, Proc. SPIE, Biophotonics–Riga, 9032, 90320F.

    Google Scholar 

  43. Doblas, A., Roche, E., Ampudia–Blasco, F. J., Martinez–Corral, M., Saavedra, G., and Garcia–Sucerquia, J. (2016) Diabetes screening by telecentric digital holographic microscopy, J. Microsc., 261, 285–290.

    Article  CAS  PubMed  Google Scholar 

  44. Doblas Exposito, A. I., Martinez Corral, M., and Saavedra Tortosa, G. (2016) Digital holographic microscopy for dia–betes screening, SPIE Newsroom, 261, 285–290.

    Google Scholar 

  45. Lin, Y.–C., and Cheng, C.–J. (2010) Determining the refractive index profile of micro–optical elements using transflective digital holographic microscopy, J. Opt., 12, 115402.

    Article  Google Scholar 

  46. Talaikova, N. A., Popov, A. P., Kalyanov, A. L., Ryabukho, V. P., and Meglinski, I. V. (2017) Dual mode diffraction phase microscopy for quantitative functional assessment of biological cells, Laser Phys. Lett., 14, 105601.

    Article  Google Scholar 

  47. Kostencka, J., Kozacki, T., Kus, A., Kemper, B., and Kujawinska, M. (2016) Holographic tomography with scanning of illumination: space–domain reconstruction for spatially invariant accuracy, Biomed. Opt. Express, 7, 4086–4101.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lin, Y., Chen, H.–C., Tu, H.–Y., Liu, C.–Y., and Cheng, C.–J. (2017) Optically driven full–angle sample rotation for tomographic imaging in digital holographic microscopy, Opt. Lett., 42, 1321–1324.

    Article  PubMed  Google Scholar 

  49. Lee, S., Park, H., Kim, K., Sohn, Y., Jang, S., and Park, Y. (2017) Refractive index tomograms and dynamic mem–brane fluctuations of red blood cells from patients with dia–betes mellitus, Sci. Rep., 7, 1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Park, H., Lee, S., Ji, M., Kim, K., Son, Y., Jang, S., and Park, Y. (2016) Measuring cell surface area and deformabil–ity of individual human red blood cells over blood storage using quantitative phase imaging, Sci. Rep., 6, 34257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Muzzey, D., and van Oudenaarden, A. (2009) Quantitative time–lapse fluorescence microscopy in single cells, Annu. Rev. Cell Dev. Biol., 25, 301–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Klonoff, D. C. (2012) Overview of fluorescence glucose sensing: a technology with a bright future, J. Diabetes Sci. Technol., 6, 1242–1250.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Matoba, O., Quan, X., Xia, P., Awatsuji, Y., and Nomura, T. (2017) Multimodal imaging based on digital holography, Proc. IEEE, 105, 906–923.

    Article  Google Scholar 

  54. Boss, D., Kuhn, J., Jourdain, P., Depeursinge, C. D., Magistretti, P. J., and Marquet, P. P. (2013) Measurement of absolute cell volume, osmotic membrane water perme–ability, refractive index of transmembrane water and solute flux by digital holographic microscopy, J. Biomed. Opt., 18, 036007.

    Article  CAS  PubMed  Google Scholar 

  55. Petrov, N. V., Putilin, S. E., and Chipegin, A. A. (2017) Time–resolved image plane off–axis digital holography, Appl. Phys. Lett., 110, 161107.

    Article  CAS  Google Scholar 

  56. Lin, Y.–C., Cheng, C.–J., and Lin, L.–C. (2017) Tunable time–resolved tick–tock pulsed digital holographic microscopy for ultrafast events, Opt. Lett., 42, 2082–2085.

    Article  CAS  PubMed  Google Scholar 

  57. Lin, Y.–C., Tu, H.–Y., Wu, X.–R., Lai, X.–J., and Cheng, C.–J. (2018) One–shot synthetic aperture digital holograph–ic microscopy with non–coplanar angular–multiplexing and coherence gating, Opt. Express, 26, 12620–12631.

    Article  PubMed  Google Scholar 

  58. Petrov, N. V., Nalegaev, S. S., Belashov, A. V., Shevkunov, I. A., Putilin, S. E., Lin, Y. C., and Cheng, C. J. (2018) Time–resolved inline digital holography for the study of non–collinear degenerate phase modulation, Opt. Lett., 43, 3481–3484.

    Article  CAS  PubMed  Google Scholar 

  59. Nalegaev, S. S., Belashov, A. V., and Petrov, N. V. (2017) Application of photothermal digital interferometry for non–linear refractive index measurements within a Kerr approx–imation, Opt. Mater. (Amst)., 69, 437–443.

    Article  CAS  Google Scholar 

  60. Belashov, A. V., Zhikhoreva, A. A., Belyaeva, T. N., Kornilova, E. S., Petrov, N. V., Salova, A. V., Semenova, I. V., and Vasyutinskii, O. S. (2016) Digital holographic microscopy in label–free analysis of cultured cells’ response to photodynamic treatment, Opt. Lett., 41, 5035–5038.

    Article  CAS  PubMed  Google Scholar 

  61. Cuche, E., Bevilacqua, F., and Depeursinge, C. (1999) Digital holography for quantitative phase–contrast imaging, Opt. Lett., 24, 291–293.

    Article  CAS  PubMed  Google Scholar 

  62. Kemper, B., and von Bally, G. (2008) Digital holographic microscopy for live cell applications and technical inspec–tion, Appl. Opt., 47, A52–A61.

    Google Scholar 

  63. Colomb, T., Dahlgren, P., Beghuin, D., Cuche, E., Marquet, P., and Depeursinge, C. (2002) Polarization imaging by use of digital holography, Appl. Opt., 41, 27–37.

    Article  PubMed  Google Scholar 

  64. Nomura, T., Javidi, B., Murata, S., Nitanai, E., and Numata, T. (2007) Polarization imaging of a 3D object by use of on–axis phase–shifting digital holography, Opt. Lett., 32, 481–483.

    Article  PubMed  Google Scholar 

  65. Rosen, J., and Brooker, G. (2008) Non–scanning motionless fluorescence three–dimensional holographic microscopy, Nat. Photonics, 2, 190–195.

    Article  CAS  Google Scholar 

  66. Xia, P., Awatsuji, Y., Nishio, K., Ura, S., and Matoba, O. (2014) Parallel phase–shifting digital holography using spectral estimation technique, Appl. Opt., 53, G123–G129.

    Book  Google Scholar 

  67. Dudenkova, V. V., and Zakharov, Y. N. (2016) Multimodal combinational holographic and fluorescence fluctuation microscopy to obtain spatial super–resolution, J. Phys. Conf. Ser., 737, 012069.

    Article  Google Scholar 

  68. Quan, X., Nitta, K., Matoba, O., Xia, P., and Awatsuji, Y. (2015) Phase and fluorescence imaging by combination of digital holographic microscopy and fluorescence microscopy, Opt. Rev., 22, 349–353.

    Article  CAS  Google Scholar 

  69. Quan, X., Matoba, O., and Awatsuji, Y. (2017) Image recovery from defocused 2D fluorescent images in multi–modal digital holographic microscopy, Opt. Lett., 42, 1796–1799.

    Article  CAS  PubMed  Google Scholar 

  70. Rappaz, B., Cano, E., Colomb, T., Kuhn, J., Depeursinge, C. D., Simanis, V., Magistretti, P. J., and Marquet, P. P. (2009) Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy, J. Biomed. Opt., 14, 034049.

    Article  CAS  PubMed  Google Scholar 

  71. Rappaz, B., Marquet, P., Cuche, E., Emery, Y., Depeursinge, C., and Magistretti, P. J. (2005) Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy, Opt. Express, 13, 9361–9373.

    Article  PubMed  Google Scholar 

  72. Siegel, G. J., Albers, R. W., Brady, S. T., and Price, D. L. (2006) Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 7th Edn., Elsevier, Academic Press, p. 175.

    Google Scholar 

  73. Berclaz, C., Pache, C., Bouwens, A., Szlag, D., Lopez, A., Joosten, L., Ekim, S., Brom, M., Gotthardt, M., Grapin–Botton, A., and Lasser, T. (2015) Combined optical coher–ence and fluorescence microscopy to assess dynamics and specificity of pancreatic beta–cell tracers, Sci. Rep., 5, 10385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Franken, P. A., Hill, A. E., Peters, C. W., and Weinreich, G. (1961) Generation of optical harmonics, Phys. Rev. Lett., 7, 118.

    Article  Google Scholar 

  75. Gannaway, J. N., and Sheppard, C. J. R. (1978) Second–harmonic imaging in the scanning optical microscope, Opt. Quantum Electron., 10, 435–439.

    Article  CAS  Google Scholar 

  76. Hellwarth, R., and Christensen, P. (1974) Nonlinear opti–cal microscopic examination of structure in polycrystalline ZnSe, Opt. Commun., 12, 318–322.

    Article  CAS  Google Scholar 

  77. Barad, Y., Eisenberg, H., Horowitz, M., and Silberberg, Y. (1997) Nonlinear scanning laser microscopy by third har–monic generation, Appl. Phys. Lett., 70, 922–924.

    Article  CAS  Google Scholar 

  78. Muller, M., Squier, J., Wilson, K. R., and Brakenhoff, G. J. (1998) 3D microscopy of transparent objects using third–harmonic generation, J. Microsc., 191, 266–274.

    Article  CAS  PubMed  Google Scholar 

  79. Wang, H.–F., Gan, W., Lu, R., Rao, Y., and Wu, B.–H. (2005) Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG–VS), Int. Rev. Phys. Chem., 24, 191–256.

    Article  CAS  Google Scholar 

  80. Woodbury, E. J., and Ng, W. K. (1962) Ruby laser operation in near IR, Proc. Inst. Radio Eng., 50, 2367.

    Google Scholar 

  81. Freudiger, C. W., Min, W., Saar, B. G., Lu, S., Holtom, G. R., He, C., Tsai, J. C., Kang, J. X., and Xie, X. S. (2008) Label–free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy, Science, 322, 1857–1861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Maker, P. D., and Terhune, R. W. (1965) Study of optical effects due to an induced polarization third order in the electric field strength, Phys. Rev., 137, A801.

    Book  Google Scholar 

  83. Zumbusch, A., Holtom, G. R., and Xie, X. S. (1999) Three–dimensional vibrational imaging by coherent anti–Stokes Raman scattering, Phys. Rev. Lett., 82, 4142.

    Article  CAS  Google Scholar 

  84. Duncan, M. D., Reintjes, J., and Manuccia, T. J. (1982) Scanning coherent anti–Stokes Raman microscope, Opt. Lett., 7, 350–352.

    Article  CAS  PubMed  Google Scholar 

  85. Tuchina, D. K., and Tuchin, V. V. (2018) Optical and struc–tural properties of biological tissues under diabetes melli–tus, J. Biomed. Photonics Eng., 4, 20201.

    Article  Google Scholar 

  86. Pan, T., Li, M., Chen, J., and Xue, H. (2014) Quantification of glycated hemoglobin indicator HbA1c through near–infrared spectroscopy, J. Innov. Opt. Health Sci., 7, 1350060.

    Article  CAS  Google Scholar 

  87. Briers, D., Duncan, D. D., Hirst, E. R., Kirkpatrick, S. J., Larsson, M., Steenbergen, W., Stromberg, T., and Thompson, O. B. (2013) Laser speckle contrast imaging: theoretical and practical limitations, J. Biomed. Opt., 18, 066018.

    Article  PubMed  Google Scholar 

  88. Dunn, A. K. (2012) Laser speckle contrast imaging of cere–bral blood flow, Ann. Biomed. Eng., 40, 367–377.

    Article  PubMed  Google Scholar 

  89. Briers, J. D. (2001) Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging, Physiol. Meas., 22, R35.

    Google Scholar 

  90. Cheng, H., Luo, Q., Zeng, S., Chen, S., Luo, W., and Gong, H. (2004) Hyperosmotic chemical agent’s effect on in vivo cerebral blood flow revealed by laser speckle, Appl. Opt., 43, 5772–5777.

    Article  CAS  PubMed  Google Scholar 

  91. Zhu, D., Larin, K. V., Luo, Q., and Tuchin, V. V. (2013) Recent progress in tissue optical clearing, Laser Photon. Rev., 7, 732–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mao, Z., Han, Z., Wen, X., Luo, Q., and Zhu, D. (2009) Influence of glycerol with different concentrations on skin optical clearing and morphological changes in vivo, Proc. SPIE, 7278, 72781T.

    Article  Google Scholar 

  93. Timoshina, P. A., Bucharskaya, A. B., Alexandrov, D. A., and Tuchin, V. V. (2017) Study of blood microcirculation of pancreas in rats with alloxan diabetes by laser speckle contrast imaging, J. Biomed. Photon. Eng., 3, 20301.

    Article  Google Scholar 

  94. Omnipaque®, Manufacturer’s instruction (https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/018956s099lbl.pdf).

  95. Tuchin, V. V. (2006) Optical Clearing of Tissues and Blood, SPIE Publishing, Bellingham, WA.

    Google Scholar 

  96. Kim, B.–M., Eichler, J., Reiser, K. M., Rubenchik, A. M., and Da Silva, L. B. (2000) Collagen structure and nonlin–ear susceptibility: effects of heat, glycation, enzymatic cleavage on second harmonic signal intensity, Lasers Surg. Med. Off. J. Am. Soc. Laser Med. Surg., 27, 329–335.

    Article  CAS  Google Scholar 

  97. Tanaka, S., Avigad, G., Brodsky, B., and Eikenberry, E. F. (1988) Glycation induces expansion of the molecular packing of collagen, J. Mol. Biol., 203, 495–505.

    Article  CAS  PubMed  Google Scholar 

  98. Mayrovitz, H. N., McClymont, A., and Pandya, N. (2013) Skin tissue water assessed via tissue dielectric constant measurements in persons with and without diabetes melli–tus, Diabetes Technol. Ther., 15, 60–65.

    Article  PubMed  Google Scholar 

  99. Dikht, N. I., Bucharskaya, A. B., Terentyuk, G. S., Maslyakova, G. N., Matveeva, O. V., Navolokin, N. A., Khlebtsov, N. G., and Khlebtsov, B. N. (2014) Morphological study of the internal organs in rats with allox–an diabetes and transplanted liver tumor after intravenous injection of gold nanorods, Russ. Open Med. J., 3, 0301.

    Article  CAS  Google Scholar 

  100. Lee, Y.–S. (2009) Principles of Terahertz Science and Technology, Springer Science & Business Media, New York.

    Google Scholar 

  101. Zeitler, J. A., Taday, P. F., Newnham, D. A., Pepper, M., Gordon, K. C., and Rades, T. (2007) Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting–a review, J. Pharm. Pharmacol., 59, 209–223.

    Article  CAS  PubMed  Google Scholar 

  102. Yang, X., Zhao, X., Yang, K., Liu, Y., Liu, Y., Fu, W., and Luo, Y. (2016) Biomedical applications of terahertz spec–troscopy and imaging, Trends Biotechnol., 34, 810–824.

    Article  CAS  PubMed  Google Scholar 

  103. Berry, E., Walker, G. C., Fitzgerald, A. J., Zinov’ev, N. N., Chamberlain, M., Smye, S. W., Miles, R. E., and Smith, M. A. (2003) Do in vivo terahertz imaging systems comply with safety guidelines? J. Laser Appl., 15, 192–198.

    Article  Google Scholar 

  104. Titova, L. V., Ayesheshim, A. K., Golubov, A., Rodriguez–Juarez, R., Woycicki, R., Hegmann, F. A., and Kovalchuk, O. (2013) Intense THz pulses down–regulate genes associ–ated with skin cancer and psoriasis: a new therapeutic avenue? Sci. Rep., 3, 2363.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Torii, T., Chiba, H., Tanabe, T., and Oyama, Y. (2017) Measurements of glucose concentration in aqueous solu–tions using reflected THz radiation for applications to a novel sub–THz radiation non–invasive blood sugar meas–urement method, Digit. Heal., 3, 1–5.

    Google Scholar 

  106. Fyodorov, V. I., Serdyukov, D. S., Cherkasova, O. P., Popova, S. S., and Nemova, E. F. (2017) The influence of terahertz radiation on the cell’s genetic apparatus, J. Opt. Technol., 84, 509–514.

    Article  Google Scholar 

  107. Wallace, V. P., Fitzgerald, A. J., Shankar, S., Flanagan, N., Pye, R., Cluff, J., and Arnone, D. D. (2004) Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo, Br. J. Dermatol., 151, 424–432.

    Article  CAS  PubMed  Google Scholar 

  108. Joseph, C. S., Patel, R., Neel, V. A., Giles, R. H., and Yaroslavsky, A. N. (2014) Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions optical and terahertz skin cancers imaging, J. Biophoton., 7, 295–303.

    Article  CAS  Google Scholar 

  109. Zaytsev, K. I., Kudrin, K. G., Karasik, V. E., Reshetov, I. V., and Yurchenko, S. O. (2015) In vivo terahertz spec–troscopy of pigmentary skin nevi: pilot study of non–inva–sive early diagnosis of dysplasia, Appl. Phys. Lett., 106, 053702.

    Article  CAS  Google Scholar 

  110. Ashworth, P. C., Pickwell–MacPherson, E., Provenzano, E., Pinder, S. E., Purushotham, A. D., Pepper, M., and Wallace, V. P. (2009) Terahertz pulsed spectroscopy of freshly excised human breast cancer, Opt. Express, 17, 12444–12454.

    Article  CAS  PubMed  Google Scholar 

  111. Reid, C. B., Fitzgerald, A., Reese, G., Goldin, R., Tekkis, P., O’Kelly, P. S., Pickwell–MacPherson, E., Gibson, A. P., and Wallace, V. P. (2011) Terahertz pulsed imaging of freshly excised human colonic tissues, Phys. Med. Biol., 56, 4333–4353.

    Article  PubMed  Google Scholar 

  112. Ji, Y. B., Oh, S. J., Kang, S.–G., Heo, J., Kim, S.–H., Choi, Y., Song, S., Son, H. Y., Kim, S. H., Lee, J. H., Haam, S. J., Huh, Y. M., Chang, J. H., Joo, C., and Suh, J. S. (2016) Terahertz reflectometry imaging for low and high grade gliomas, Sci. Rep., 6, 36040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pickwell, E., Cole, B. E., Fitzgerald, A. J., Wallace, V. P., and Pepper, M. (2004) Simulation of terahertz pulse prop–agation in biological systems, Appl. Phys. Lett., 84, 2190–2192.

    Article  CAS  Google Scholar 

  114. Duponchel, L., Laurette, S., Hatirnaz, B., Treizebre, A., Affouard, F., and Bocquet, B. (2013) Terahertz microflu–idic sensor for in situ exploration of hydration shell of mol–ecules, Chemom. Intell. Lab. Syst., 123, 28–35.

    Article  CAS  Google Scholar 

  115. Morozov, N. A. (1907) Periodic Systems of the Structure of Matter: The Theory of the Formation of Chemical Elements [in Russian], Izdatelskii Dom Sytina, Moscow.

    Google Scholar 

  116. Nagai, M., Yada, H., Arikawa, T., and Tanaka, K. (2006) Terahertz time–domain attenuated total reflection spec–troscopy in water and biological solution, Int. J. Infrared Millimeter Waves, 27, 505–515.

    Article  CAS  Google Scholar 

  117. Shiraga, K., Ogawa, Y., Kondo, N., Irisawa, A., and Imamura, M. (2013) Evaluation of the hydration state of saccharides using terahertz time–domain attenuated total reflection spectroscopy, Food Chem., 140, 315–320.

    Article  CAS  PubMed  Google Scholar 

  118. Arikawa, T., Nagai, M., and Tanaka, K. (2008) Characterizing hydration state in solution using terahertz time–domain attenuated total reflection spectroscopy, Chem. Phys. Lett., 457, 12–17.

    Article  CAS  Google Scholar 

  119. Yada, H., Nagai, M., and Tanaka, K. (2008) Origin of the fast relaxation component of water and heavy water revealed by terahertz time–domain attenuated total reflec–tion spectroscopy, Chem. Phys. Lett., 464, 166–170.

    Article  CAS  Google Scholar 

  120. Cherkasova, O. P., Nazarov, M. M., Angeluts, A. A., and Shkurinov, A. P. (2016) The investigation of blood plasma in the terahertz frequency range, Opt. Spectrosc., 120, 50–57.

    Article  CAS  Google Scholar 

  121. Tielrooij, K. J., Paparo, D., Piatkowski, L., Bakker, H. J., and Bonn, M. (2009) Dielectric relaxation dynamics of water in model membranes probed by terahertz spec–troscopy, Biophys. J., 97, 2484–2492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Auston, D. H. (1975) Picosecond optoelectronic switching and gating in silicon, Appl. Phys. Lett., 26, 101–103.

    Article  CAS  Google Scholar 

  123. Martin, P. C. (1967) Sum rules, Kramers–Kronig rela–tions, transport coefficients in charged systems, Phys. Rev., 161, 143.

    CAS  Google Scholar 

  124. Griffith, P. R., and De Haseth, J. A. (1986) Fourier trans–form infrared spectroscopy, Chem. Anal. Ser. Monogr. Anal. Chem. Appl., 83.

    Google Scholar 

  125. Komandin, G. A., Chuchupal, S. V., Lebedev, S. P., Goncharov, Y. G., Korolev, A. F., Porodinkov, O. E., Spektor, I. E., and Volkov, A. A. (2013) BWO generators for terahertz dielectric measurements, IEEE Trans. Terahertz Sci. Technol., 3, 440–444.

    Article  Google Scholar 

  126. Sun, C.–K., Chen, H.–Y., Tseng, T.–F., You, B., Wei, M.–L., Lu, J.–Y., Chang, Y.–L., Tseng, W.–L., and Wang, T.–D. (2018) High sensitivity of T–ray for thrombus sensing, Sci. Rep., 8, 3948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zaytsev, K. I., Gavdush, A. A., Chernomyrdin, N., and Yurchenko, S. O. (2015) Highly accurate in vivo terahertz spectroscopy of healthy skin: variation of refractive index and absorption coefficient along the human body, IEEE Trans. Terahertz Sci. Technol., 5, 817–827.

    Article  CAS  Google Scholar 

  128. Smolyanskaya, O. A., Kravtsenyuk, O. V., Panchenko, A. V., Odlyanitskiy, E. L., Guillet, J. P., Cherkasova, O. P., and Khodzitsky, M. K. (2017) Study of blood plasma optical prop–erties in mice grafted with Ehrlich carcinoma in the frequency range 0.1–1.0THz, Quantum Electron., 47, 1031–1040.

    Article  CAS  Google Scholar 

  129. Smolyanskaya, O. A., Schelkanova, I. J., Kulya, M. S., Odlyanitskiy, E. L., Goryachev, I. S., Tsypkin, A. N., Grachev, Y. V., Toropova, Y. G., and Tuchin, V. V. (2018) Glycerol dehydration of native and diabetic animal tissues studied by THz–TDS and NMR methods, Biomed. Opt. Express, 9, 1198–1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Serita, K., Matsuda, E., Okada, K., Murakami, H., Kawayama, I., and Tonouchi, M. (2018) Terahertz microfluidic chip sensitivity enhanced with a few arrays of meta atoms, Optical Sensors, 3, 051603.

    Google Scholar 

  131. Soltani, A., Neshasteh, H., Mataji–Kojouri, A., Born, N., Castro–Camus, E., Shahabadi, M., and Koch, M. (2016) Highly sensitive terahertz dielectric sensor for small–vol–ume liquid samples, Appl. Phys. Lett., 108, 191105.

    Article  CAS  Google Scholar 

  132. Skorobogatiy, M. (2009) Microstructured and photonic bandgap fibers for applications in the resonant bio–and chemical sensors, J. Sensors, 2009, 524237.

    Article  CAS  Google Scholar 

  133. Xie, L., Gao, W., Shu, J., Ying, Y., and Kono, J. (2015) Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics, Sci. Rep., 5, 8671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Serita, K., Mizuno, S., Murakami, H., Kawayama, I., Takahashi, Y., Yoshimura, M., Mori, Y., Darmo, J., and Tonouchi, M. (2012) Scanning laser terahertz near–field imaging system, Opt. Express, 20, 12959–12965.

    Article  CAS  PubMed  Google Scholar 

  135. Zhang, Y., Zhou, W., Wang, X., Cui, Y., and Sun, W. (2008) Terahertz digital holography, Strain, 44, 380–385.

    Article  Google Scholar 

  136. Petrov, N. V., Kulya, M. S., Tsypkin, A. N., Bespalov, V. G., and Gorodetsky, A. (2016) Application of terahertz pulse time–domain holography for phase imaging, IEEE Trans. Terahertz Sci. Technol., 6, 464–472.

    Article  CAS  Google Scholar 

  137. Guerboukha, H., Nallappan, K., and Skorobogatiy, M. (2018) Exploiting k–space/frequency duality toward real–time terahertz imaging, Optica, 5, 109–116.

    Article  Google Scholar 

  138. Krozer, V., Loffler, T., Dall, J., Kusk, A., Eichhorn, F., Olsson, R. K., Buron, J. D., Jepsen, P. U., Zhurbenko, V., and Jensen, T. (2010) Terahertz imaging systems with aperture synthesis techniques, IEEE Trans. Microwave Theory Tech., 58, 2027–2039.

    Article  Google Scholar 

  139. Chen, H.–T., Kersting, R., and Cho, G. C. (2003) Terahertz imaging with nanometer resolution, Appl. Phys. Lett., 83, 3009–3011.

    Article  CAS  Google Scholar 

  140. Planken, P. (2008) Microscopy: a terahertz nanoscope, Nature, 456, 454–455.

    Article  CAS  PubMed  Google Scholar 

  141. Luk’yanchuk, B. S., Paniagua–Dominguez, R., Minin, I., Minin, O., and Wang, Z. (2017) Refractive index less than two: photonic nanojets yesterday, today and tomorrow, Opt. Mater. Express, 7, 1820–1847.

    Article  Google Scholar 

  142. Nguyen Pham, H. H., Hisatake, S., Minin, O. V., Nagatsuma, T., and Minin, I. V. (2017) Enhancement of spatial resolution of terahertz imaging systems based on ter–ajet generation by dielectric cube, APL Photonics, 2, 056106.

    Article  CAS  Google Scholar 

  143. Yue, L., Yan, B., Monks, J. N., Dhama, R., Wan, Z., Minin, O. V., and Minin, I. V. (2018) A millimetre–wave cuboid solid immersion lens with intensity–enhanced amplitude mask apodization, J. Infrared Millim. Terahertz Waves, 39, 546–552.

    Article  Google Scholar 

  144. Chernomyrdin, N. V., Schadko, A. O., Lebedev, S. P., Tolstoguzov, V. L., Kurlov, V. N., Reshetov, I. V., Spektor, I. E., Skorobogatiy, M., Yurchenko, S. O., and Zaytsev, K. I. (2017) Solid immersion terahertz imaging with sub–wavelength resolution, Appl. Phys. Lett., 110, 221109.

    Article  CAS  Google Scholar 

  145. Chernomyrdin, N. V., Kucheryavenko, A. S., Malakhov, K. M., Schadko, A. O., Komandin, G. A., Lebedev, S. P., Dolganova, I. N., Kurlov, V. N., Lavrukhin, D. V., Ponomarev, D. S., Yurchenko, S. O., Tuchin, V. V., and Zaytsev, K. I. (2018) Terahertz solid immersion microscopy for sub–wavelength–resolution imaging of bio–logical objects and tissues, in Saratov Fall Meeting 2017: Optical Technologies in Biophysics and Medicine XIX, Proc. SPIE, 10716, 1071606.

    Google Scholar 

  146. Chernomyrdin, N. V., Kucheryavenko, A. S., Kolontaeva, G. S., Katyba, G. M., Karalkin, P. A., Parfenov, V. A., Gryadunova, A. A., Norkin, N. E., Smolyanskaya, O. A., Minin, O. V., Minin, I. V., Karasik, V. E., and Zaytsev, K. I. (2018) A potential of terahertz solid immersion microscopy for visualizing sub–wavelength–scale tissue spheroids, Unconventional Optical Imaging, Proc. SPIE, 10677, 106771Y.

    Google Scholar 

  147. Shiraga, K., Suzuki, T., Kondo, N., De Baerdemaeker, J., and Ogawa, Y. (2015) Quantitative characterization of hydration state and destructuring effect of monosaccha–rides and disaccharides on water hydrogen bond network, Carbohydr. Res., 406, 46–54.

    Article  CAS  PubMed  Google Scholar 

  148. Lee, D., Kang, J.–H., Lee, J.–S., Kim, H.–S., Kim, C., Kim, J. H., Lee, T., Son, J.–H., Park, Q.–H., and Seo, M. (2015) Highly sensitive and selective sugar detection by terahertz nano–antennas, Sci. Rep., 5, 15459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cherkasova, O. P., Nazarov, M. M., and Shkurinov, A. P. (2016) Investigation of bovine serum albumin glycation by THz spectroscopy, in Saratov Fall Meeting 2015: Third Int. Symp. on Optics and Biophotonics and Seventh Finnish–Russian Photonics and Laser Symp. (PALS), Proc. SPIE, 9917, 991706.

    Article  Google Scholar 

  150. Mernea, M., Ionescu, A., Vasile, I., Nica, C., Stoian, G., Dascalu, T., and Mihailescu, D. F. (2015) In vitro human serum albumin glycation monitored by terahertz spec–troscopy, Opt. Quantum Electron., 47, 961–973.

    Article  CAS  Google Scholar 

  151. Heyden, M., Brundermann, E., Heugen, U., Niehues, G., Leitner, D. M., and Havenith, M. (2008) Long–range influence of carbohydrates on the solvation dynamics of water–answers from terahertz absorption measurements and molecular modeling simulations, J. Am. Chem. Soc., 130, 5773–5779.

    Article  CAS  PubMed  Google Scholar 

  152. Leitner, D. M., Gruebele, M., and Havenith, M. (2008) Solvation dynamics of biomolecules: modeling and tera–hertz experiments, HFSP J., 2, 314–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Cherkasova, O. P., Nazarov, M. M., Smirnova, I. N., Angeluts, A. A., and Shkurinov, A. P. (2014) Application of time–domain THz spectroscopy for studying blood plasma of rats with experimental diabetes, Phys. Wave Phenom., 22, 185–188.

    Article  Google Scholar 

  154. Chen, H., Chen, X., Ma, S., Wu, X., Yang, W., Zhang, W., and Li, X. (2018) Quantify glucose level in freshly diabet–ic’s blood by terahertz time–domain spectroscopy, J. Infrared Millim. Terahertz Waves, 39, 399–408.

    Article  CAS  Google Scholar 

  155. Markelz, A. G., Roitberg, A., and Heilweil, E. J. (2000) Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0THz, Chem. Phys. Lett., 320, 42–48.

    Article  CAS  Google Scholar 

  156. Tsai, Y.–F., Tseng, T.–F., Chen, H., Lu, J.–T., Lee, W.–J., Wang, T.–D., and Sun, C.–K. (2012) In vivo T–ray imaging of blood glucose level in diabetic mice, Proc. Int. Symp. Front. THz Technol., 1, 26–30.

    Google Scholar 

  157. Tuchin, V. V. (2008) Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, CRC Press, New York.

    Book  Google Scholar 

  158. Fine, I. (2009) Glucose correlation with light scattering patterns, in Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, pp. 250–292.

    Google Scholar 

  159. Tseng, T.–F., Yang, S.–C., Shih, Y.–T., Tsai, Y.–F., Wang, T.–D., and Sun, C.–K. (2015) Near–field sub–THz trans–mission–type image system for vessel imaging in vivo, Opt. Express, 23, 25058–25071.

    Article  CAS  PubMed  Google Scholar 

  160. Cherkasova, O. P., Nazarov, M. M., Berlovskaya, E. E., Angeluts, A. A., Makurenkov, A. M., and Shkurinov, A. P. (2016) Studying human and animal skin optical properties by terahertz time–domain spectroscopy, Bull. Russ. Acad. Sci. Phys., 80, 479–483.

    Article  CAS  Google Scholar 

  161. Schaefer, H. (2016) Skin Barrier: Principles of Percutaneous Absorption, Karger Publishing, Basel.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Smolyanskaya.

Additional information

Russian Text © O. A. Smolyanskaya, E. N. Lazareva, S. S. Nalegaev, N. V. Petrov, K. I. Zaytsev, P. A. Timoshina, D. K. Tuchina, Ya. G. Toropova, O. V. Kornyushin, A. Yu. Babenko, J.-P. Guillet, V. V. Tuchin, 2019, published in Uspekhi Biologicheskoi Khimii, 2019, Vol. 59, pp. 253–294.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolyanskaya, O.A., Lazareva, E.N., Nalegaev, S.S. et al. Multimodal Optical Diagnostics of Glycated Biological Tissues. Biochemistry Moscow 84 (Suppl 1), 124–143 (2019). https://doi.org/10.1134/S0006297919140086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919140086

Keywords

Navigation