Skip to main content
Log in

Near-Infrared Fluorescent Proteins and Their Applications

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

High transparency, low light-scattering, and low autofluorescence of mammalian tissues in the near-infrared (NIR) spectral range (~650–900 nm) open a possibility for in vivo imaging of biological processes at the micro-and macroscales to address basic and applied problems in biology and biomedicine. Recently, probes that absorb and fluoresce in the NIR optical range have been engineered using bacterial phytochromes–natural NIR light-absorbing photoreceptors that regulate metabolism in bacteria. Since the chromophore in all these proteins is biliverdin, a natural product of heme catabolism in mammalian cells, they can be used as genetically encoded fluorescent probes, similarly to GFP-like fluorescent proteins. In this review, we discuss photophysical and biochemical properties of NIR fluorescent proteins, reporters, and biosensors and analyze their characteristics required for expression of these molecules in mammalian cells. Structural features and molecular engineering of NIR fluorescent probes are discussed. Applications of NIR fluorescent proteins and biosensors for studies of molecular processes in cells, as well as for tissue and organ visualization in whole-body imaging in vivo, are described. We specifically focus on the use of NIR fluorescent probes in advanced imaging technologies that combine fluorescence and bioluminescence methods with photoacoustic tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BiFC:

bimolecular fluorescence complementation

BiPC:

bimolecular photoacoustic complementation

BphP:

bacterial phytochrome

BV:

biliverdin IXα

CBD:

chromophore-binding domain

FMT:

fluorescence molecular tomography

FP:

fluorescent protein

FRET:

Förster resonance energy transfer

HO:

heme oxygenase

MSOT:

multi-spectral optoacoustic tomography

NIR:

near-infrared

OM:

output module

PA:

photoacoustic effect

PCB:

phycocyanobilin

PCM:

photosensory core module

PET:

positron-emission tomography

PPI:

protein–protein interactions

SIM:

structured illumination microscopy

siRNA:

small interfering RNA

TD:

time-domain analysis

XCT:

X-ray computed tomography

References

  1. Weissleder, R., and Ntziachristos, V. (2003) Shedding light onto live molecular targets, Nat. Med., 9, 123–128.

    Article  CAS  PubMed  Google Scholar 

  2. Weissleder, R. (2001) A clearer vision for in vivo imaging, Nat. Biotechnol., 19, 316–317.

    Article  CAS  PubMed  Google Scholar 

  3. Hong, G., Antaris, A. L., and Dai, H. (2017) Near–infrared fluorophores for biomedical imaging, Nat. Biomed. Eng., 1, 0010.

    Article  Google Scholar 

  4. Comenge, J., Sharkey, J., Fragueiro, O., Wilm, B., Brust, M., Murray, P., Levy, R., and Plagge, A. (2018) Multimodal cell tracking from systemic administration to tumour growth by combining gold nanorods and reporter genes, eLife, 7, e33140.

    Book  Google Scholar 

  5. Tran, M. T. N., Tanaka, J., Hamada, M., Sugiyama, Y., Sakaguchi, S., Nakamura, M., Takahashi, S., and Miwa, Y. (2014) In vivo image analysis using iRFP transgenic mice, Exp. Anim., 63, 311–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, Y., Zhou, M., Wang, X., Qin, G., Weintraub, N. L., and Tang, Y. (2014) Assessing in vitro stem–cell function and tracking engraftment of stem cells in ischaemic hearts by using novel iRFP gene labelling, J. Cell. Mol. Med., 18, 1889–1894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Piatkevich, K. D., Malashkevich, V. N., Morozova, K. S., Nemkovich, N. A., Almo, S. C., and Verkhusha, V. V. (2013) Extended stokes shift in fluorescent proteins: chro–mophore–protein interactions in a near–infrared TagRFP675 variant, Sci. Rep., 3, 1847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, Z., Zhang, Z., Bi, L., Cui, Z., Deng, J., Wang, D., and Zhang, X.–E. (2016) Mutagenesis of mNeptune red–shifts emission spectrum to 681–685 nm, PLoS One, 11, e0148749.

    Book  Google Scholar 

  9. Morozova, K. S., Piatkevich, K. D., Gould, T. J., Zhang, J., Bewersdorf, J., and Verkhusha, V. V. (2010) Far–red flu–orescent protein excitable with red lasers for flow cytome–try and superresolution STED nanoscopy, Biophys. J., 99, L13–L15.

    Google Scholar 

  10. Auldridge, M. E., and Forest, K. T. (2011) Bacterial phy–tochromes: more than meets the light, Crit. Rev. Biochem. Mol. Biol., 46, 67–88.

    Article  CAS  PubMed  Google Scholar 

  11. Filonov, G. S., Piatkevich, K. D., Ting, L.–M., Zhang, J., Kim, K., and Verkhusha, V. V. (2011) Bright and stable near–infrared fluorescent protein for in vivo imaging, Nat. Biotechnol., 29, 757–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shcherbakova, D. M., and Verkhusha, V. V. (2013) Near–infrared fluorescent proteins for multicolor in vivo imaging, Nat. Methods, 10, 751–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shu, X., Royant, A., Lin, M. Z., Aguilera, T. A., Lev–Ram, V., Steinbach, P. A., and Tsien, R. Y. (2009) Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome, Science, 324, 804–807.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fischer, A. J., and Lagarias, J. C. (2004) Harnessing phy–tochrome’s glowing potential, Proc. Natl. Acad. Sci. USA, 101, 17334–17339.

    Article  CAS  PubMed  Google Scholar 

  15. Rockwell, N. C., and Lagarias, J. C. (2010) A brief history of phytochromes, Chemphyschem, 11, 1172–1180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chernov, K. G., Redchuk, T. A., Omelina, E. S., and Verkhusha, V. V. (2017) Near–infrared fluorescent proteins, biosensors, and optogenetic tools engineered from phy–tochromes, Chem. Rev., 117, 6423–6446.

    Article  CAS  PubMed  Google Scholar 

  17. Yu, D., Gustafson, W. C., Han, C., Lafaye, C., Noirclerc–Savoye, M., Ge, W.–P., Thayer, D. A., Huang, H., Kornberg, T. B., Royant, A., Jan, L. Y., Jan, Y. N., Weiss, W. A., and Shu, X. (2014) An improved monomeric infrared fluorescent protein for neuronal and tumour brain imaging, Nat. Commun., 5, 3626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Auldridge, M. E., Satyshur, K. A., Anstrom, D. M., and Forest, K. T. (2012) Structure–guided engineering enhances a phytochrome–based infrared fluorescent protein, J. Biol. Chem., 287, 7000–7009.

    Article  CAS  PubMed  Google Scholar 

  19. Lehtivuori, H., Bhattacharya, S., Angenent–Mari, N. M., Satyshur, K. A., and Forest, K. T. (2015) Removal of chro–mophore–proximal polar atoms decreases water content and increases fluorescence in a near infrared phytofluor, Front. Mol. Biosci., 2, 65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rodriguez, E. A., Tran, G. N., Gross, L. A., Crisp, J. L., Shu, X., Lin, J. Y., and Tsien, R. Y. (2016) A far–red fluo–rescent protein evolved from a cyanobacterial phycobilipro–tein, Nat. Methods, 13, 763–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shemetov, A. A., Oliinyk, O. S., and Verkhusha, V. V. (2017) How to increase brightness of near–infrared fluores–cent proteins in mammalian cells, Cell Chem. Biol., 24, 758–766.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ding, W.–L., Miao, D., Hou, Y.–N., Jiang, S.–P., Zhao, B.–Q., Zhou, M., Scheer, H., and Zhao, K.–H. (2017) Small monomeric and highly stable near–infrared fluorescent markers derived from the thermophilic phycobiliprotein, ApcF2, Biochim. Biophys. Acta, 1864, 1877–1886.

    Article  CAS  Google Scholar 

  23. Piatkevich, K. D., Subach, F. V., and Verkhusha, V. V. (2013) Far–red light photoactivatable near–infrared fluores–cent proteins engineered from a bacterial phytochrome, Nat. Commun., 4, 2153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu, D., Baird, M. A., Allen, J. R., Howe, E. S., Klassen, M. P., Reade, A., Makhijani, K., Song, Y., Liu, S., Murthy, Z., Zhang, S.–Q., Weiner, O. D., Kornberg, T. B., Jan, Y.–N., Davidson, M. W., and Shu, X. (2015) A naturally monomeric infrared fluorescent protein for protein labeling in vivo, Nat. Methods, 12, 763–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu, D., Dong, Z., Gustafson, W. C., Ruiz–Gonzalez, R., Signor, L., Marzocca, F., Borel, F., Klassen, M. P., Makhijani, K., Royant, A., Jan, Y.–N., Weiss, W. A., Guo, S., and Shu, X. (2016) Rational design of a monomeric and photostable far–red fluorescent protein for fluorescence imaging in vivo, Protein Sci., 25, 308–315.

    Article  CAS  PubMed  Google Scholar 

  26. Rumyantsev, K. A., Shcherbakova, D. M., Zakharova, N. I., Emelyanov, A. V., Turoverov, K. K., and Verkhusha, V. V. (2015) Minimal domain of bacterial phytochrome required for chromophore binding and fluorescence, Sci. Rep., 5, 18348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shcherbakova, D. M., Baloban, M., Pletnev, S., Malashkevich, V. N., Xiao, H., Dauter, Z., and Verkhusha, V. V. (2015) Molecular basis of spectral diversity in near–infrared phytochrome–based fluorescent proteins, Chem. Biol., 22, 1540–1551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Verkhusha, V. V., Shcherbakova, D. M., and Baloban, M. (2018) Monomeric Near–infrared Fluorescent Proteins Engineered from Bacterial Phytochromes and Methods for Making Same, US patent application 20180044383.

    Google Scholar 

  29. Shcherbakova, D. M., Baloban, M., Emelyanov, A. V., Brenowitz, M., Guo, P., and Verkhusha, V. V. (2016) Bright monomeric near–infrared fluorescent proteins as tags and biosensors for multiscale imaging, Nat. Commun., 7, 12405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shcherbakova, D. M., Cammer, N. C., Huisman, T. M., Verkhusha, V. V., and Hodgson, L. (2018) Direct multiplex imaging and optogenetics of Rho GTPases enabled by near–infrared FRET, Nat. Chem. Biol., 14, 591–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Snapp, E. L., Hegde, R. S., Francolini, M., Lombardo, F., Colombo, S., Pedrazzini, E., Borgese, N., and Lippincott–Schwartz, J. (2003) Formation of stacked ER cisternae by low affinity protein interactions, J. Cell Biol., 163, 257–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Day, R. N., and Davidson, M. W. (2009) The fluorescent protein palette: tools for cellular imaging, Chem. Soc. Rev., 38, 2887–2921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zacharias, D. A., Violin, J. D., Newton, A. C., and Tsien, R. Y. (2002) Partitioning of lipid–modified monomeric GFPs into membrane microdomains of live cells, Science, 296, 913–916.

    Article  CAS  PubMed  Google Scholar 

  34. Shcherbakova, D. M., Baloban, M., and Verkhusha, V. V. (2015) Near–infrared fluorescent proteins engineered from bacterial phytochromes, Curr. Opin. Chem. Biol., 27, 52–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wagner, J. R., Zhang, J., Brunzelle, J. S., Vierstra, R. D., and Forest, K. T. (2007) High resolution structure of Deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution, J. Biol. Chem., 282, 12298–12309.

    Article  CAS  PubMed  Google Scholar 

  36. Yang, X., Kuk, J., and Moffat, K. (2008) Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: photo–conversion and signal transduction, Proc. Natl. Acad. Sci. USA, 105, 14715–14720.

    Article  PubMed  Google Scholar 

  37. Lamparter, T., Michael, N., Caspani, O., Miyata, T., Shirai, K., and Inomata, K. (2003) Biliverdin binds cova–lently to agrobacterium phytochrome Agp1 via its ring A vinyl side chain, J. Biol. Chem., 278, 33786–33792.

    Article  CAS  PubMed  Google Scholar 

  38. Lamparter, T., Carrascal, M., Michael, N., Martinez, E., Rottwinkel, G., and Abian, J. (2004) The biliverdin chro–mophore binds covalently to a conserved cysteine residue in the N–terminus of Agrobacterium phytochrome Agp1, Biochemistry, 43, 3659–3669.

    Article  CAS  PubMed  Google Scholar 

  39. Wagner, J. R., Brunzelle, J. S., Forest, K. T., and Vierstra, R. D. (2005) A light–sensing knot revealed by the structure of the chromophore–binding domain of phytochrome, Nature, 438, 325–331.

    Article  CAS  PubMed  Google Scholar 

  40. Yang, X., Kuk, J., and Moffat, K. (2009) Conformational differences between the Pfr and Pr states in Pseudomonas aeruginosa bacteriophytochrome, Proc. Natl. Acad. Sci. USA, 106, 15639–15644.

    Article  PubMed  Google Scholar 

  41. Wagner, J. R., Zhang, J., von Stetten, D., Gunther, M., Murgida, D. H., Mroginski, M. A., Walker, J. M., Forest, K. T., Hildebrandt, P., and Vierstra, R. D. (2008) Mutational analysis of Deinococcus radiodurans bacterio–phytochrome reveals key amino acids necessary for the photochromicity and proton exchange cycle of phy–tochromes, J. Biol. Chem., 283, 12212–12226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Buhrke, D., Escobar, F. V., Sauthof, L., Wilkening, S., Herder, N., Tavraz, N. N., Willoweit, M., Keidel, A., Utesch, T., Mroginski, M.–A., Schmitt, F.–J., Hildebrandt, P., and Friedrich, T. (2016) The role of local and remote amino acid substitutions for optimizing fluorescence in bacteriophytochromes: a case study on iRFP, Sci. Rep., 6, 28444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Feliks, M., Lafaye, C., Shu, X., Royant, A., and Field, M. (2016) Structural determinants of improved fluorescence in a family of bacteriophytochrome–based infrared fluorescent proteins: insights from continuum electrostatic calculations and molecular dynamics simulations, Biochemistry, 55, 4263–4274.

    Article  CAS  PubMed  Google Scholar 

  44. Bhattacharya, S., Auldridge, M. E., Lehtivuori, H., Ihalainen, J. A., and Forest, K. T. (2014) Origins of fluo–rescence in evolved bacteriophytochromes, J. Biol. Chem., 289, 32144–32152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Baloban, M., Shcherbakova, D. M., Pletnev, S., Pletnev, V. Z., Lagarias, J. C., and Verkhusha, V. V. (2017) Designing brighter near–infrared fluorescent proteins: insights from structural and biochemical studies, Chem. Sci., 8, 4546–4557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stepanenko, O. V., Baloban, M., Bublikov, G. S., Shcherbakova, D. M., Stepanenko, O. V., Turoverov, K. K., Kuznetsova, I. M., and Verkhusha, V. V. (2016) Allosteric effects of chromophore interaction with dimeric near–infrared fluorescent proteins engineered from bacterial phytochromes, Sci. Rep., 6, 18750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hontani, Y., Shcherbakova, D. M., Baloban, M., Zhu, J., Verkhusha, V. V., and Kennis, J. T. M. (2016) Bright blue–shifted fluorescent proteins with Cys in the GAF domain engineered from bacterial phytochromes: fluorescence mechanisms and excited–state dynamics, Sci. Rep., 6, 37362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stepanenko, O. V., Stepanenko, O. V., Kuznetsova, I. M., Shcherbakova, D. M., Verkhusha, V. V., and Turoverov, K. K. (2017) Interaction of biliverdin chromophore with near–infrared fluorescent protein BphP1–FP engineered from bacterial phytochrome, Int. J. Mol. Sci., 18, E1009.

    Book  Google Scholar 

  49. Stepanenko, O. V., Stepanenko, O. V., Bublikov, G. S., Kuznetsova, I. M., Verkhusha, V. V., and Turoverov, K. K. (2017) Stabilization of structure in near–infrared fluores–cent proteins by binding of biliverdin chromophore, J. Mol. Struct., 1140, 22–31.

    Article  CAS  Google Scholar 

  50. Bellini, D., and Papiz, M. Z. (2012) Structure of a bacte–riophytochrome and light–stimulated protomer swapping with a gene repressor, Structure, 20, 1436–1446.

    Article  CAS  PubMed  Google Scholar 

  51. Pandey, N., Nobles, C. L., Zechiedrich, L., Maresso, A. W., and Silberg, J. J. (2015) Combining random gene fis–sion and rational gene fusion to discover near–infrared flu–orescent protein fragments that report on protein–protein interactions, ACS Synth. Biol., 4, 615–624.

    Article  CAS  PubMed  Google Scholar 

  52. Pandey, N., Kuypers, B. E., Nassif, B., Thomas, E. E., Alnahhas, R. N., Segatori, L., and Silberg, J. J. (2016) Tolerance of a knotted near–infrared fluorescent protein to random circular permutation, Biochemistry, 55, 3763–3773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Filonov, G. S., and Verkhusha, V. V. (2013) A near–infrared BiFC reporter for in vivo imaging of protein–protein inter–actions, Chem. Biol., 20, 1078–1086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang, L., and Makarov, D. E. (2008) Translocation of a knotted polypeptide through a pore, J. Chem. Phys., 129, 121107.

    Article  CAS  PubMed  Google Scholar 

  55. Virnau, P., Mirny, L. A., and Kardar, M. (2006) Intricate knots in proteins: function and evolution, PLoS Comput. Biol., 2, e122.

    Google Scholar 

  56. Tchekanda, E., Sivanesan, D., and Michnick, S. W. (2014) An infrared reporter to detect spatiotemporal dynamics of protein–protein interactions, Nat. Methods, 11, 641–644.

    Article  CAS  PubMed  Google Scholar 

  57. Mallam, A. L., Rogers, J. M., and Jackson, S. E. (2010) Experimental detection of knotted conformations in dena–tured proteins, Proc. Natl. Acad. Sci. USA, 107, 8189–8194.

    Article  PubMed  Google Scholar 

  58. Agollah, G. D., Wu, G., Sevick–Muraca, E. M., and Kwon, S. (2014) In vivo lymphatic imaging of a human inflamma–tory breast cancer model, J. Cancer, 5, 774–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Berlec, A., Zavrsnik, J., Butinar, M., Turk, B., and Strukelj, B. (2015) In vivo imaging of Lactococcus lactis, Lactobacillus plantarum and Escherichia coli expressing infrared fluores–cent protein in mice, Microb. Cell Fact., 14, 181.

    Google Scholar 

  60. Calvo–Alvarez, E., Stamatakis, K., Punzon, C., Alvarez–Velilla, R., Tejeria, A., Escudero–Martinez, J. M., Perez–Pertejo, Y., Fresno, M., Balana–Fouce, R., and Reguera, R. M. (2015) Infrared fluorescent imaging as a potent tool for in vitro, ex vivo and in vivo models of visceral leishmani–asis, PLoS. Neglected Tropical Diseases, 9, e0003666.

    Google Scholar 

  61. Deliolanis, N. C., Ale, A., Morscher, S., Burton, N. C., Schaefer, K., Radrich, K., Razansky, D., and Ntziachristos, V. (2014) Deep–tissue reporter–gene imaging with fluorescence and optoacoustic tomography: a per–formance overview, Mol. Imaging Biol., 16, 652–660.

    Article  PubMed  Google Scholar 

  62. Filonov, G. S., Krumholz, A., Xia, J., Yao, J., Wang, L. V., and Verkhusha, V. V. (2012) Deep–tissue photoacoustic tomography of genetically encoded iRFP probe, Angew. Chem., 51, 1448–1451.

    Article  CAS  Google Scholar 

  63. Hock, A. K., Lee, P., Maddocks, O. D., Mason, S. M., Blyth, K., and Vousden, K. H. (2014) iRFP is a sensitive marker for cell number and tumor growth in high–through–put systems, Cell Cycle, 13, 220–226.

    CAS  Google Scholar 

  64. Hock, A. K., Cheung, E. C., Humpton, T. J., Monteverde, T., Paulus–Hock, V., Lee, P., McGhee, E., Scopelliti, A., Murphy, D. J., Strathdee, D., Blyth, K., and Vousden, K. H. (2017) Development of an inducible mouse model of iRFP713 to track recombinase activity and tumour devel–opment in vivo, Sci. Rep., 7, 1837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Idevall–Hagren, O., Dickson, E. J., Hille, B., Toomre, D. K., and De Camilli, P. (2012) Optogenetic control of phos–phoinositide metabolism, Proc. Natl. Acad. Sci. USA, 109, E2316–E2323.

    Google Scholar 

  66. Ishii, T., Sato, K., Kakumoto, T., Miura, S., Touhara, K., Takeuchi, S., and Nakata, T. (2015) Light generation of intracellular Ca2+ signals by a genetically encoded protein BACCS, Nat. Commun., 6, 8021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jiguet–Jiglaire, C., Cayol, M., Mathieu, S., Jeanneau, C., Bouvier–Labit, C., Ouafik, L., and El–Battari, A. (2014) Noninvasive near–infrared fluorescent protein–based imag–ing of tumor progression and metastases in deep organs and intraosseous tissues, J. Biomed. Opt., 19, 16019.

    Article  CAS  PubMed  Google Scholar 

  68. Kamensek, U., Rols, M.–P., Cemazar, M., and Golzio, M. (2016) Visualization of nonspecific antitumor effectiveness and vascular effects of gene electro–transfer to tumors, Curr. Gene Ther., 16, 90–97.

    Article  CAS  PubMed  Google Scholar 

  69. Krumholz, A., Shcherbakova, D. M., Xia, J., Wang, L. V., and Verkhusha, V. V. (2014) Multicontrast photoacoustic in vivo imaging using near–infrared fluorescent proteins, Sci. Rep., 4, 3939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lai, C.–W., Chen, H.–L., Yen, C.–C., Wang, J.–L., Yang, S.–H., and Chen, C.–M. (2016) Using dual fluorescence reporting genes to establish an in vivo imaging model of orthotopic lung adenocarcinoma in mice, Mol. Imaging Biol., 18, 849–859.

    Article  CAS  PubMed  Google Scholar 

  71. Lu, Y., Darne, C. D., Tan, I.–C., Wu, G., Wilganowski, N., Robinson, H., Azhdarinia, A., Zhu, B., Rasmussen, J. C., and Sevick–Muraca, E. M. (2013) In vivo imaging of ortho–topic prostate cancer with far–red gene reporter fluores–cence tomography and in vivo and ex vivo validation, J. Biomed. Opt., 18, 101305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nedosekin, D. A., Sarimollaoglu, M., Galanzha, E. I., Sawant, R., Torchilin, V. P., Verkhusha, V. V., Ma, J., Frank, M. H., Biris, A. S., and Zharov, V. P. (2013) Synergy of photoacoustic and fluorescence flow cytometry of circu–lating cells with negative and positive contrasts, J. Biophotonics, 6, 425–434.

    Article  CAS  PubMed  Google Scholar 

  73. Oliveira, J. C., da Silva, A. C., Oliveira, R. A. D. S., Pereira, V. R. A., and Gil, L. H. V. G. (2016) In vivo near–infrared fluorescence imaging of Leishmania amazonensis expressing infrared fluorescence protein (iRFP) for real–time monitoring of Cutaneous leishmaniasis in mice, J. Microbiol. Meth., 130, 189–195.

    Article  CAS  Google Scholar 

  74. Paulus–Hock, V., Cheung, E. C., Roxburgh, P., Vousden, K. H., and Hock, A. K. (2014) iRFP is a real time marker for transformation–based assays in high content screening, PLoS One, 9, e98399.

    Book  Google Scholar 

  75. Richie, C. T., Whitaker, L. R., Whitaker, K. W., Necarsulmer, J., Baldwin, H. A., Zhang, Y., Fortuno, L., Hinkle, J. J., Koivula, P., Henderson, M. J., Sun, W., Wang, K., Smith, J. C., Pickel, J., Ji, N., Hope, B. T., and Harvey, B. K. (2017) Near–infrared fluorescent protein iRFP713 as a reporter protein for optogenetic vectors, a transgenic cre–reporter rat, and other neuronal studies, J. Neurosci. Meth., 284, 1–14.

    Article  CAS  Google Scholar 

  76. Roman, W., Martins, J. P., Carvalho, F. A., Voituriez, R., Abella, J. V. G., Santos, N. C., Cadot, B., Way, M., and Gomes, E. R. (2017) Myofibril contraction and crosslink–ing drive nuclear movement to the periphery of skeletal muscle, Nat. Cell Biol., 19, 1189–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Spronken, M. I., Short, K. R., Herfst, S., Bestebroer, T. M., Vaes, V. P., van der Hoeven, B., Koster, A. J., Kremers, G.–J., Scott, D. P., Gultyaev, A. P., Sorell, E. M., de Graaf, M., Barcena, M., Rimmelzwaan, G. F., and Fouchier, R. A. (2015) Optimizations and challenges involved in the creation of vari–ous bioluminescent and fluorescent influenza A virus strains for in vitro and in vivo applications, PLoS One, 10, e0133888.

    Google Scholar 

  78. Stabley, D. R., Oh, T., Simon, S. M., Mattheyses, A. L., and Salaita, K. (2015) Real–time fluorescence imaging with 20 nm axial resolution, Nat. Commun., 6, 8307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tanaka, N., Lajud, S. A., Ramsey, A., Szymanowski, A. R., Ruffner, R., O’Malley, B. W., and Li, D. (2016) Application of infrared–based molecular imaging to a mouse model with head and neck cancer, Head Neck, 38 (Suppl. 1), E1351–E1357.

    Book  Google Scholar 

  80. Tzoumas, S., Nunes, A., Deliolanis, N. C., and Ntziachristos, V. (2015) Effects of multispectral excitation on the sensitivity of molecular optoacoustic imaging, J. Biophotonics, 8, 629–637.

    Article  PubMed  Google Scholar 

  81. Wang, K., Sun, W., Richie, C. T., Harvey, B. K., Betzig, E., and Ji, N. (2015) Direct wavefront sensing for high–resolu–tion in vivo imaging in scattering tissue, Nat. Commun., 6, 7276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhu, B., Wu, G., Robinson, H., Wilganowski, N., Hall, M. A., Ghosh, S. C., Pinkston, K. L., Azhdarinia, A., Harvey, B. R., and Sevick–Muraca, E. M. (2013) Tumor margin detection using quantitative NIRF molecular imaging tar–geting EpCAM validated by far red gene reporter iRFP, Mol. Imag. Biol., 15, 560–568.

    Article  Google Scholar 

  83. Zhu, B., Robinson, H., Zhang, S., Wu, G., and Sevick–Muraca, E. M. (2015) Longitudinal far red gene–reporter imaging of cancer metastasis in preclinical models: a tool for accelerating drug discovery, Biomed. Opt. Express, 6, 3346–3351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. To, T.–L., Piggott, B. J., Makhijani, K., Yu, D., Jan, Y. N., and Shu, X. (2015) Rationally designed fluorogenic pro–tease reporter visualizes spatiotemporal dynamics of apop–tosis in vivo, Proc. Natl. Acad. Sci. USA, 112, 3338–3343.

    Article  CAS  PubMed  Google Scholar 

  85. Donnelly, S. K., Cabrera, R., Mao, S. P. H., Christin, J. R., Wu, B., Guo, W., Bravo–Cordero, J. J., Condeelis, J. S., Segall, J. E., and Hodgson, L. (2017) Rac3 regulates breast cancer invasion and metastasis by controlling adhesion and matrix degradation, J. Cell Biol., 216, 4331–4349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kyung, T., Lee, S., Kim, J. E., Cho, T., Park, H., Jeong, Y.–M., Kim, D., Shin, A., Kim, S., Baek, J., Kim, J., Kim, N. Y., Woo, D., Chae, S., Kim, C.–H., Shin, H.–S., Han, Y.–M., Kim, D., and Heo, W. D. (2015) Optogenetic control of endogenous Ca2+ channels in vivo, Nat. Biotechnol., 33, 1092–1096.

    Article  CAS  PubMed  Google Scholar 

  87. Piatkevich, K. D., Suk, H.–J., Kodandaramaiah, S. B., Yoshida, F., DeGennaro, E. M., Drobizhev, M., Hughes, T. E., Desimone, R., Boyden, E. S., and Verkhusha, V. V. (2017) Near–infrared fluorescent proteins engineered from bacterial phytochromes in neuroimaging, Biophys. J., 113, 2299–2309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fyk–Kolodziej, B., Hellmer, C. B., and Ichinose, T. (2014) Marking cells with infrared fluorescent proteins to preserve photoresponsiveness in the retina, BioTechniques, 57, 245–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Satoh, T., Baba, M., Nakatsuka, D., Ishikawa, Y., Aburatani, H., Furuta, K., Ishikawa, T., Hatanaka, H., Suzuki, M., and Watanabe, Y. (2003) Role of heme oxyge–nase–1 protein in the neuroprotective effects of cyclopen–tenone prostaglandin derivatives under oxidative stress, Eur. J. Neurosci., 17, 2249–2255.

    Article  PubMed  Google Scholar 

  90. Gibbs, P. E. M., and Maines, M. D. (2007) Biliverdin inhibits activation of NF–kappaB: reversal of inhibition by human biliverdin reductase, Int. J. Cancer, 121, 2567–2574.

    Article  CAS  PubMed  Google Scholar 

  91. Miralem, T., Lerner–Marmarosh, N., Gibbs, P. E. M., Tudor, C., Hagen, F. K., and Maines, M. D. (2012) The human biliverdin reductase–based peptide fragments and biliverdin regulate protein kinase Cδ activity, J. Biol. Chem., 287, 24698–24712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Molzer, C., Pfleger, B., Putz, E., RoЯmann, A., Schwarz, U., Wallner, M., Bulmer, A. C., and Wagner, K.–H. (2013) In vitro DNA–damaging effects of intestinal and related tetrapyrroles in human cancer cells, Exp. Cell Res., 319, 536–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nuhn, P., Kunzli, B. M., Hennig, R., Mitkus, T., Ramanauskas, T., Nobiling, R., Meuer, S. C., Friess, H., and Berberat, P. O. (2009) Heme oxygenase–1 and its metabolites affect pancreatic tumor growth in vivo, Mol. Cancer, 8, 37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen, K., Gunter, K., and Maines, M. D. (2000) Neurons overexpressing heme oxygenase–1 resist oxidative stress–mediated cell death, J. Neurochem., 75, 304–313.

    Article  CAS  PubMed  Google Scholar 

  95. Song, W., Su, H., Song, S., Paudel, H. K., and Schipper, H. M. (2006) Over–expression of heme oxygenase–1 pro–motes oxidative mitochondrial damage in rat astroglia, J. Cell. Physiol., 206, 655–663.

    Article  CAS  PubMed  Google Scholar 

  96. Takeda, A., Perry, G., Abraham, N. G., Dwyer, B. E., Kutty, R. K., Laitinen, J. T., Petersen, R. B., and Smith, M. A. (2000) Overexpression of heme oxygenase in neu–ronal cells, the possible interaction with tau, J. Biol. Chem., 275, 5395–5399.

    Article  CAS  PubMed  Google Scholar 

  97. Honda, M., Yogosawa, S., Kamada, M., Kamata, Y., Kimura, T., Koike, Y., Harada, T., Takahashi, H., Egawa, S., and Yoshida, K. (2017) A novel near–infrared fluores–cent protein, iRFP720, facilitates transcriptional profiling of prostate cancer bone metastasis in mice, Anticancer Res., 37, 3009–3013.

    CAS  PubMed  Google Scholar 

  98. Huang, C., Lan, W., Wang, F., Zhang, C., Liu, X., and Chen, Q. (2017) AAV–iRFP labelling of human mes–enchymal stem cells for near–infrared fluorescence imag–ing, Biosci. Rep., 37, BSR20160556.

    Google Scholar 

  99. Sita, T. L., Kouri, F. M., Hurley, L. A., Merkel, T. J., Chalastanis, A., May, J. L., Ghelfi, S. T., Cole, L. E., Cayton, T. C., Barnaby, S. N., Sprangers, A. J., Savalia, N., James, C. D., Lee, A., Mirkin, C. A., and Stegh, A. H. (2017) Dual bioluminescence and near–infrared fluores–cence monitoring to evaluate spherical nucleic acid nanoconjugate activity in vivo, Proc. Natl. Acad. Sci. USA, 114, 4129–4134.

    Article  CAS  PubMed  Google Scholar 

  100. Rumyantsev, K. A., Turoverov, K. K., and Verkhusha, V. V. (2016) Near–infrared bioluminescent proteins for two–color multimodal imaging, Sci. Rep., 6, 36588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mezzanotte, L., Iljas, J. D., Que, I., Chan, A., Kaijzel, E., Hoeben, R., and Lowik, C. (2017) Optimized longitudinal monitoring of stem cell grafts in mouse brain using a novel bioluminescent/near infrared fluorescent fusion reporter, Cell Transplant., 26, 1878–1889.

    Article  PubMed  Google Scholar 

  102. Isomura, M., Yamada, K., Noguchi, K., and Nishizono, A. (2017) Near–infrared fluorescent protein iRFP720 is optimal for in vivo fluorescence imaging of rabies virus infection, J. Gen. Virol., 98, 2689–2698.

    Article  CAS  PubMed  Google Scholar 

  103. Telford, W. G., Shcherbakova, D. M., Buschke, D., Hawley, T. S., and Verkhusha, V. V. (2015) Multiparametric flow cytometry using near–infrared fluo–rescent proteins engineered from bacterial phytochromes, PLoS One, 10, e0122342.

    Google Scholar 

  104. Zhang, X.–E., Cui, Z., and Wang, D. (2016) Sensing of biomolecular interactions using fluorescence comple–menting systems in living cells, Biosens. Bioelectron., 76, 243–250.

    Article  CAS  PubMed  Google Scholar 

  105. Kodama, Y., and Hu, C.–D. (2012) Bimolecular fluores–cence complementation (BiFC): a 5–year update and future perspectives, BioTechniques, 53, 285–298.

    Article  CAS  PubMed  Google Scholar 

  106. Miller, K. E., Kim, Y., Huh, W.–K., and Park, H.–O. (2015) Bimolecular fluorescence complementation (BiFC) analysis: advances and recent applications for genome–wide interaction studies, J. Mol. Biol., 427, 2039–2055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hirata, E., and Kiyokawa, E. (2016) Future perspective of single–molecule FRET biosensors and intravital FRET microscopy, Biophys. J., 111, 1103–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hochreiter, B., Pardo–Garcia, A., and Schmid, J. A. (2015) Fluorescent proteins as genetically encoded FRET biosensors in life sciences, Sensors, 15, 26281–26314.

    Article  CAS  PubMed  Google Scholar 

  109. Komatsu, N., Aoki, K., Yamada, M., Yukinaga, H., Fujita, Y., Kamioka, Y., and Matsuda, M. (2011) Development of an optimized backbone of FRET biosensors for kinases and GTPases, Mol. Biol. Cell, 22, 4647–4656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen, M., Li, W., Zhang, Z., Liu, S., Zhang, X., Zhang, X.–E., and Cui, Z. (2015) Novel near–infrared BiFC sys–tems from a bacterial phytochrome for imaging protein interactions and drug evaluation under physiological con–ditions, Biomaterials, 48, 97–107.

    Article  CAS  PubMed  Google Scholar 

  111. Li, L., Shemetov, A. A., Baloban, M., Hu, P., Zhu, L., Shcherbakova, D. M., Zhang, R., Shi, J., Yao, J., Wang, L. V., and Verkhusha, V. V. (2018) Small near–infrared pho–tochromic protein for photoacoustic multi–contrast imag–ing and detection of protein interactions in vivo, Nat. Commun., 9, 2734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zlobovskaya, O. A., Sergeeva, T. F., Shirmanova, M. V., Dudenkova, V. V., Sharonov, G. V., Zagaynova, E. V., and Lukyanov, K. A. (2016) Genetically encoded far–red fluo–rescent sensors for caspase–3 activity, BioTechniques, 60, 62–68.

    Article  CAS  PubMed  Google Scholar 

  113. Sakaue–Sawano, A., Kurokawa, H., Morimura, T., Hanyu, A., Hama, H., Osawa, H., Kashiwagi, S., Fukami, K., Miyata, T., Miyoshi, H., Imamura, T., Ogawa, M., Masai, H., and Miyawaki, A. (2008) Visualizing spa–tiotemporal dynamics of multicellular cell–cycle progres–sion, Cell, 132, 487–498.

    Article  CAS  PubMed  Google Scholar 

  114. Chudakov, D. M., Matz, M. V., Lukyanov, S., and Lukyanov, K. A. (2010) Fluorescent proteins and their applications in imaging living cells and tissues, Physiol. Rev., 90, 1103–1163.

    Article  CAS  PubMed  Google Scholar 

  115. Stuker, F., Ripoll, J., and Rudin, M. (2011) Fluorescence molecular tomography: principles and potential for phar–maceutical research, Pharmaceutics, 3, 229–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zanca, C., Villa, G. R., Benitez, J. A., Thorne, A. H., Koga, T., D’Antonio, M., Ikegami, S., Ma, J., Boyer, A. D., Banisadr, A., Jameson, N. M., Parisian, A. D., Eliseeva, O. V., Barnabe, G. F., Liu, F., Wu, S., Yang, H., Wykosky, J., Frazer, K. A., Verkhusha, V. V., Isaguliants, M. G., Weiss, W. A., Gahman, T. C., Shiau, A. K., Chen, C. C., Mischel, P. S., Cavenee, W. K., and Furnari, F. B. (2017) Glioblastoma cellular cross–talk converges on NF–kB to attenuate EGFR inhibitor sensitivity, Genes Dev., 31, 1212–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rice, W. L., Shcherbakova, D. M., Verkhusha, V. V., and Kumar, A. T. N. (2015) In vivo tomographic imaging of deep–seated cancer using fluorescence lifetime contrast, Cancer Res., 75, 1236–1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang, L. V., and Hu, S. (2012) Photoacoustic tomogra–phy: in vivo imaging from organelles to organs, Science, 335, 1458–1462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chan, X. H. D., Balasundaram, G., Attia, A. B. E., Goggi, J. L., Ramasamy, B., Han, W., Olivo, M., and Sugii, S. (2018) Multimodal imaging approach to monitor browning of adipose tissue in vivo, J. Lipid Res., 59, 1071–1078.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Yao, J., Kaberniuk, A. A., Li, L., Shcherbakova, D. M., Zhang, R., Wang, L., Li, G., Verkhusha, V. V., and Wang, L. V. (2016) Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near–infrared photochromic probe, Nat. Methods, 13, 67–73.

    Article  CAS  PubMed  Google Scholar 

  121. Dortay, H., Mark, J., Wagener, A., Zhang, E., Grotzinger, C., Hildebrandt, P., Friedrich, T., and Laufer, J. (2016) Dual–wavelength photoacoustic imaging of a photoswitch–able reporter protein, in Photons Plus Ultrasound: Imaging and Sensing 2016, International Society for Optics and Photonics, 970820.

    Google Scholar 

  122. Mark, J., Dortay, H., Wagener, A., Zhang, E., Buchmann, J., Grotzinger, C., Friedrich, T., and Laufer, J. (2018) Dual–wavelength 3D photoacoustic imaging of mam–malian cells using a photoswitchable phytochrome reporter protein, Commun. Phys., 1, 3.

    Article  CAS  Google Scholar 

  123. Van Veen, R. L., Sterenborg, H. J., Pifferi, A., Torricelli, A., and Cubeddu, R. (2005) Determination of VIS–NIR absorption coefficients of mammalian fat, with time–and spatially resolved diffuse reflectance and transmission spectroscopy, J. Biomed. Optics, 10, 054004.

    Article  CAS  Google Scholar 

  124. Palmer, K. F., and Williams, D. (1974) Optical properties of water in the near infrared, JOSA, 64, 1107–1110.

    Article  CAS  Google Scholar 

  125. Buiteveld, H., Hakvoort, J. H. M., and Donze, M. (1994) Optical properties of pure water, SPIE, 2258, 174–184.

    CAS  Google Scholar 

  126. Otero, L. H., Klinke, S., Rinaldi, J., Velazquez–Escobar, F., Mroginski, M. A., Fernandez Lopez, M., Malamud, F., Vojnov, A. A., Hildebrandt, P., Goldbaum, F. A., and Bonomi, H. R. (2016) Structure of the full–length bacte–riophytochrome from the plant pathogen Xanthomonas campestris provides clues to its long–range signaling mech–anism, J. Mol. Biol., 428, 3702–3720.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Verkhusha.

Additional information

Russian Text © M. M. Karasev, O. V. Stepanenko, K. A. Rumyantsev, K. K. Turoverov, V. V. Verkhusha, 2019, published in Uspekhi Biologicheskoi Khimii, 2019, Vol. 59, pp. 67–102.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karasev, M.M., Stepanenko, O.V., Rumyantsev, K.A. et al. Near-Infrared Fluorescent Proteins and Their Applications. Biochemistry Moscow 84 (Suppl 1), 32–50 (2019). https://doi.org/10.1134/S0006297919140037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919140037

Keywords

Navigation