Skip to main content
Log in

Dynamic Microtubules in Alzheimer’s Disease: Association with Dendritic Spine Pathology

  • Mini-Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common incurable neurodegenerative disorder that affects the processes of memory formation and storage. The loss of dendritic spines and alteration in their morphology in AD correlate with the extent of patient’s cognitive decline. Tubulin had been believed to be restricted to dendritic shafts, until recent studies demonstrated that dynamically growing tubulin microtubules enter dendritic spines and promote their maturation. Abnormalities of tubulin cytoskeleton may contribute to the process of dendritic spine shape alteration and their subsequent loss in AD. In this review, association between tubulin cytoskeleton dynamics and dendritic spine morphology is discussed in the context of dendritic spine alterations in AD. Potential implications of these findings for the development of AD therapy are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

APP:

amyloid-precursor protein

EB3:

end-binding protein 3

MT:

microtubule

PS1 (2):

Presenilin 1(2)

+TIPs:

microtubule plus-end-tracking proteins

References

  1. Hardy, J., and Selkoe, D. J. (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics, Science, 297, 353–356.

    Article  PubMed  CAS  Google Scholar 

  2. Hardy, J. (2009) The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal, J. Neurochem., 110, 1129–1134.

    Article  PubMed  CAS  Google Scholar 

  3. Bergmans, B. A., and De Strooper, B. (2010) Gamma-secretases: from cell biology to therapeutic strategies, Lancet Neurol., 9, 215–226.

    Article  PubMed  CAS  Google Scholar 

  4. Duggan, S. P., and McCarthy, J. V. (2016) Beyond gammasecretase activity: the multifunctional nature of presenilins in cell signalling pathways, Cell. Signal., 28, 1–11.

    Article  PubMed  CAS  Google Scholar 

  5. DeKosky, S. T., and Scheff, S. W. (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity, Ann. Neurol., 27, 457–464.

    Article  PubMed  CAS  Google Scholar 

  6. Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., Hansen, L. A., and Katzman, R. (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment, Ann. Neurol., 30, 572–580.

    Article  PubMed  CAS  Google Scholar 

  7. Koffie, R. M., Hyman, B. T., and Spires-Jones, T. L. (2011) Alzheimer’s disease: synapses gone cold, Mol. Neurodegener., 6,63.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Selkoe, D. J. (2002) Alzheimer’s disease is a synaptic failure, Science, 298, 789–791.

    Article  PubMed  CAS  Google Scholar 

  9. Chen, Y., and Sabatini, B. L. (2012) Signaling in dendritic spines and spine microdomains, Curr. Opin. Neurobiol., 22, 389–396.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bourne, J. N., and Harris, K. M. (2008) Balancing structure and function at hippocampal dendritic spines, Annu. Rev. Neurosci., 31, 47–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N., and Nakahara, H. (2003) Structure-stability-function relationships of dendritic spines, Trends Neurosci., 26, 360–368.

    Article  PubMed  CAS  Google Scholar 

  12. Bourne, J., and Harris, K. M. (2007) Do thin spines learn to be mushroom spines that remember? Curr. Opin. Neurobiol., 17, 381–386.

    Article  PubMed  CAS  Google Scholar 

  13. Hayashi, Y., and Majewska, A. K. (2005) Dendritic spine geometry: functional implication and regulation, Neuron, 46, 529–532.

    Article  PubMed  CAS  Google Scholar 

  14. Hering, H., and Sheng, M. (2001) Dentritic spines: structure, dynamics and regulation, Nat. Rev. Neurosci., 2, 880–888.

    Article  PubMed  CAS  Google Scholar 

  15. Tackenberg, C., Ghori, A., and Brandt, R. (2009) Thin, stubby or mushroom: spine pathology in Alzheimer’s disease, Curr. Alzheimer Res., 6, 261–268.

    PubMed  CAS  Google Scholar 

  16. Popugaeva, E., Supnet, C., and Bezprozvanny, I. (2012) Presenilins, deranged calcium homeostasis, synaptic loss and dysfunction in Alzheimer’s disease, Messenger, 1, 53–62.

    Article  Google Scholar 

  17. Popugaeva, E., and Bezprozvanny, I. (2013) Role of endoplasmic reticulum Ca2+ signaling in the pathogenesis of Alzheimer disease, Front. Mol. Neurosci., 6,29.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Androuin, A., Potier, B., Nagerl, U. V., Cattaert, D., Danglot, L., Thierry, M., Youssef, I., Triller, A., Duyckaerts, C., El Hachimi, K. H., Dutar, P., Delatour, B., and Marty, S. (2018) Evidence for altered dendritic spine compartmentalization in Alzheimer’s disease and functional effects in a mouse model, Acta Neuropathol., 135, 839–854.

    Article  PubMed  CAS  Google Scholar 

  19. Sun, S., Zhang, H., Liu, J., Popugaeva, E., Xu, N. J., Feske, S., White, C. L., 3rd, and Bezprozvanny, I. (2014) Reduced synaptic STIM2 expression and impaired store-operated calcium entry cause destabilization of mature spines in mutant presenilin mice, Neuron, 82, 79–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhang, H., Wu, L., Pchitskaya, E., Zakharova, O., Saito, T., Saido, T., and Bezprozvanny, I. (2015) Neuronal storeoperated calcium entry and mushroom spine loss in amyloid precursor protein knock-in mouse model of Alzheimer’s disease, J. Neurosci., 35, 13275–13286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Saito, T., Matsuba, Y., Mihira, N., Takano, J., Nilsson, P., Itohara, S., Iwata, N., and Saido, T. C. (2014) Single App knock-in mouse models of Alzheimer’s disease, Nat. Neurosci., 17, 661–663.

    Article  PubMed  CAS  Google Scholar 

  22. Penazzi, L., Tackenberg, C., Ghori, A., Golovyashkina, N., Niewidok, B., Selle, K., Ballatore, C., Smith Iii, A. B., Bakota, L., and Brandt, R. (2016) Aβ-mediated spine changes in the hippocampus are microtubule-dependent and can be reversed by a subnanomolar concentration of the microtubule-stabilizing agent epothilone D, Neuropharmacology, 105, 84–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Tackenberg, C., and Brandt, R. (2009) Divergent pathways mediate spine alterations and cell death induced by amyloid-beta, wild-type tau, and R406W tau, J. Neurosci., 29, 14439–14450.

    Article  PubMed  CAS  Google Scholar 

  24. Popugaeva, E., Pchitskaya, E., Speshilova, A., Alexandrov, S., Zhang, H., Vlasova, O., and Bezprozvanny, I. (2015) STIM2 protects hippocampal mushroom spines from amyloid synaptotoxicity, Mol. Neurodegener., 10,37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Qu, X., Yuan, F. N., Corona, C., Pasini, S., Pero, M. E., Gundersen, G. G., Shelanski, M. L., and Bartolini, F. (2017) Stabilization of dynamic microtubules by mDia1 drives Tau-dependent Abeta1-42 synaptotoxicity, J. Cell. Biol., 216, 3161–3178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Boros, B. D., Greathouse, K. M., Gentry, E. G., Curtis, K. A., Birchall, E. L., Gearing, M., and Herskowitz, J. H. (2017) Dendritic spines provide cognitive resilience against Alzheimer’s disease, Ann. Neurol., 82, 602–614.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mitchison, T., and Kirschner, M. (1984) Dynamic instability of microtubule growth, Nature, 312, 237–242.

    Article  PubMed  CAS  Google Scholar 

  28. Baas, P. W., Rao, A. N., Matamoros, A. J., and Leo, L. (2016) Stability properties of neuronal microtubules, Cytoskeleton (Hoboken, N.J.), 73, 442–460.

    Article  CAS  Google Scholar 

  29. Dent, E. W. (2017) Of microtubules and memory: implications for microtubule dynamics in dendrites and spines, Mol. Biol. Cell, 28, 1–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gu, J., Firestein, B. L., and Zheng, J. Q. (2008) Microtubules in dendritic spine development, J. Neurosci., 28, 12120–12124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hu, X., Viesselmann, C., Nam, S., Merriam, E., and Dent, E. W. (2008) Activity-dependent dynamic microtubule invasion of dendritic spines, J. Neurosci., 28, 13094–13105.

    Article  PubMed  CAS  Google Scholar 

  32. Jaworski, L., Kapitein, L. C., Gouveia, S. M., Dortland, B. R., Wulf, P. S., Grigoriev, I., Camera, P., Spangler, S. A., DiStefano, P., Demmers, L., Krugers, H., Defilippi, P., Akhmanova, A., and Hoogenraad, C. C. (2009) Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity, Neuron, 61, 85–100.

    Article  PubMed  CAS  Google Scholar 

  33. Merriam, E. B., Millette, M., Lumbard, D. C., Saengsawang, W., Fothergill, T., Hu, X., Ferhat, L., and Dent, E. W. (2013) Synaptic regulation of microtubule dynamics in dendritic spines by calcium, F-actin, and drebrin, J. Neurosci., 33, 16471–16482.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hu, X., Ballo, L., Pietila, L., Viesselmann, C., Ballweg, J., Lumbard, D., Stevenson, M., Merriam, E., and Dent, E. W. (2011) BDNF-induced increase of PSD-95 in dendritic spines requires dynamic microtubule invasions, J. Neurosci., 31, 15597–15603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Uchida, S., Martel, G., Pavlowsky, A., Takizawa, S., Hevi, C., Watanabe, Y., Kandel, E. R., Alarcon, J. M., and Shumyatsky, G. P. (2014) Learning-induced and stathmin-dependent changes in microtubule stability are critical for memory and disrupted in ageing, Nat. Commun., 5, 4389–4389.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Akhmanova, A., and Steinmetz, M. O. (2010) Microtubule +TIPs at a glance, J. Cell Sci., 123, 3415–3419.

    Article  PubMed  CAS  Google Scholar 

  37. Nakagawa, H., Koyama, K., Murata, Y., Morito, M., Akiyama, T., and Nakamura, Y. (2000) EB3, a novel member of the EB1 family preferentially expressed in the central nervous system, binds to a CNS-specific APC homologue, Oncogene, 19, 210–216.

    Article  PubMed  CAS  Google Scholar 

  38. Merriam, E. B., Lumbard, D. C., Viesselmann, C., Ballweg, J., Stevenson, M., Pietila, L., Hu, X., and Dent, E. W. (2011) Dynamic microtubules promote synaptic NMDA receptor-dependent spine enlargement, PLoS One, 6, e27688.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Stepanova, T., Slemmer, J., Hoogenraad, C. C., Lansbergen, G., Dortland, B., De Zeeuw, C. I., Grosveld, F., van Cappellen, G., Akhmanova, A., and Galjart, N. (2003) Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein), J. Neurosci., 23, 2655–2664.

    Article  PubMed  CAS  Google Scholar 

  40. Pchitskaya, E., Kraskovskaya, N., Chernyuk, D., Popugaeva, E., Zhang, H., Vlasova, O., and Bezprozvanny, I. (2017) Stim2-Eb3 association and morphology of dendritic spines in hippocampal neurons, Sci. Rep., 7, 17625.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang, H., Sun, S., Wu, L., Pchitskaya, E., Zakharova, O., Fon Tacer, K., and Bezprozvanny, I. (2016) Store-operated calcium channel complex in postsynaptic spines: a new therapeutic target for Alzheimer’s disease treatment, J. Neurosci., 36, 11837–11850.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Pchitskaya, E., Popugaeva, E., and Bezprozvanny, I. (2018) Calcium signaling and molecular mechanisms underlying neurodegenerative diseases, Cell Calcium, 70, 87–94.

    Article  PubMed  CAS  Google Scholar 

  43. Chang, C. L., Chen, Y. J., Quintanilla, C. G., Hsieh, T. S., and Liou, J. (2018) EB1 binding restricts STIM1 translocation to ER-PM junctions and regulates store-operated Ca2+ entry, J. Cell Biol., 6, 2047–2058.

    Article  CAS  Google Scholar 

  44. Grigoriev, I., Gouveia, S. M., van der Vaart, B., Demmers, J., Smyth, J. T., Honnappa, S., Splinter, D., Steinmetz, M. O., Putney, J. W., Hoogenraad, C. C., and Akhmanova, A. (2008) STIM1 is a microtubule plus end tracking protein involved in remodeling of the endoplasmic reticulum, Curr. Biol., 18, 177–182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Geraldo, S., Khanzada, U. K., Parsons, M., Chilton, J. K., and Gordon-Weeks, P. R. (2008) Targeting of the F-actinbinding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis, Nat. Cell Biol., 10, 1181–1189.

    Article  PubMed  CAS  Google Scholar 

  46. Ishizuka, Y., and Hanamura, K. (2017) in Drebrin. Advances in Experimental Medicine and Biology (Shirao T., and Sekino, Y., eds.), Vol. 1006, Springer, Tokyo, pp. 203–223.

  47. Gordon-Weeks, P. R. (2016) The role of the drebrin/EB3/Cdk5 pathway in dendritic spine plasticity, implications for Alzheimer’s disease, Brain Res. Bull., 126, 293–299.

    Article  PubMed  CAS  Google Scholar 

  48. Fanara, P., Husted, K. H., Selle, K., Wong, P. Y., Banerjee, J., Brandt, R., and Hellerstein, M. K. (2010) Changes in microtubule turnover accompany synaptic plasticity and memory formation in response to contextual fear conditioning in mice, Neuroscience, 168, 167–178.

    Article  PubMed  CAS  Google Scholar 

  49. Buck, K. B., and Zheng, J. Q. (2002) Growth cone turning induced by direct local modification of microtubule dynamics, J. Neurosci., 22, 9358–9367.

    Article  PubMed  CAS  Google Scholar 

  50. Selkoe, D. J., and Hardy, J. (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years, EMBO Mol. Med., 8, 595–608.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zempel, H., Luedtke, J., Kumar, Y., Biernat, J., Dawson, H., Mandelkow, E., and Mandelkow, E.-M. (2013) Amyloid-β oligomers induce synaptic damage via tau-dependent microtubule severing by TTLL6 and spastin, EMBO J., 32, 2920–2937.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Mota, S. I., Ferreira, I. L., Pereira, C., Oliveira, C. R., and Rego, A. C. (2012) Amyloid-beta peptide 1–42 causes microtubule deregulation through N-methyl-D-aspartate receptors in mature hippocampal cultures, Curr. Alzheimer Res., 9, 844–856.

    Article  PubMed  CAS  Google Scholar 

  53. Cash, A. D., Aliev, G., Siedlak, S. L., Nunomura, A., Fujioka, H., Zhu, X., Raina, A. K., Vinters, H. V., Tabaton, M., Johnson, A. B., Paula-Barbosa, M., Avila, J., Jones, P. K., Castellani, R. J., Smith, M. A., and Perry, G. (2003) Microtubule reduction in Alzheimer’s disease and aging is independent of tau filament formation, Am. J. Pathol., 162, 1623–1627.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Pianu, B., Lefort, R., Thuiliere, L., Tabourier, E., and Bartolini, F. (2014) The Abeta(1)(–)(4)(2) peptide regulates microtubule stability independently of tau, J. Cell Sci., 127, 1117–1127.

    Article  PubMed  CAS  Google Scholar 

  55. Tackenberg, C., Grinschgl, S., Trutzel, A., Santuccione, A. C., Frey, M. C., Konietzko, U., Grimm, J., Brandt, R., and Nitsch, R. M. (2013) NMDA receptor subunit composition determines beta-amyloid-induced neurodegeneration and synaptic loss, Cell Death Dis., 25,129.

    Google Scholar 

  56. Kovalevich, J., Cornec, A.-S., Yao, Y., James, M., Crowe, A., Lee, V. M. Y., Trojanowski, J. Q., Smith, A. B., Ballatore, C., and Brunden, K. R. (2016) Characterization of brain-penetrant pyrimidine-containing molecules with differential microtubule-stabilizing activities developed as potential therapeutic agents for Alzheimer’s disease and related tauopathies, J. Pharmacol. Exp. Ther., 357, 432–450.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Makani, V., Zhang, B., Han, H., Yao, Y., Lassalas, P., Lou, K., Paterson, I., Lee, V. M., Trojanowski, J. Q., Ballatore, C., Smith, A. B., 3rd, and Brunden, K. R. (2016) Evaluation of the brain-penetrant microtubule-stabilizing agent, dictyostatin, in the PS19 tau transgenic mouse model of tauopathy, Acta Neuropathol. Commun., 4,106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Lou, K., Yao, Y., Hoye, A. T., James, M. J., Cornec, A. S., Hyde, E., Gay, B., Lee, V. M., Trojanowski, J. Q., Smith, A. B., 3rd, Brunden, K. R., and Ballatore, C. (2014) Brain-penetrant, orally bioavailable microtubule-stabilizing small molecules are potential candidate therapeutics for Alzheimer’s disease and related tauopathies, J. Med. Chem., 57, 6116–6127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Bezprozvanny.

Additional information

Published in Russian in Biokhimiya, 2018, Vol. 83, No. 9, pp. 1343–1350.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pchitskaya, E.I., Zhemkov, V.A. & Bezprozvanny, I.B. Dynamic Microtubules in Alzheimer’s Disease: Association with Dendritic Spine Pathology. Biochemistry Moscow 83, 1068–1074 (2018). https://doi.org/10.1134/S0006297918090080

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918090080

Keywords

Navigation