Skip to main content
Log in

Alterations in tear biochemistry associated with postanesthetic chronic dry eye syndrome

  • Regular Papers
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Perioperative dry eye syndrome (DES) is a common ocular complication of long-term general anesthesia. Chronic DES can lead to permanent damage to the cornea and disturbance of visual function, up to total loss of vision. Here, a relationship between the duration of general anesthesia and the risk of chronic DES in patients was demonstrated. Using an experimental model of perioperative corneal abrasions in rabbits, it was found that introduction of animals to 3-h general anesthesia resulted in clinically significant chronic damage to the cornea in 50% of cases. The development of the complication was not associated with irreversible or long-term impairment of tear secretion, but it was accompanied by a decrease in tear film stability and growth of the total protein content as well as decrease in total antioxidant activity of the tear induced by low molecular weight antioxidants. In addition, anesthesia-induced changes in activity of tear antioxidant enzymes including superoxide dismutase and enzymes providing homeostasis of reduced glutathione (glutathione peroxidase, glutathione-S-transferase, glutathione reductase) were observed. All these alterations were protracted (up to 1-2 weeks) and therefore might account for transition of the perioperative DES into the chronic form. These findings can be useful in the development of novel approaches for the prevention and treatment of chronic forms of DES in the postanesthetic period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AOA:

antioxidant activity

DES:

dry eye syndrome

GPO:

glutathione peroxidase

GR:

glutathione reductase

GST:

glutathione-SH-transferase

ROS:

reactive oxygen species

SOD:

superoxide dismutase

References

  1. Terry, H. R., Jr., Kearns, T. P., Love, J. G., and Orwoll, G. (1965) Untoward ophthalmic and neurologic events of anesthesia, Surg. Clin. North Am., 45, 927–938.

    Article  PubMed  Google Scholar 

  2. Snow, J. C., Kripke, B. J., Norton, M. L., Chandra, P., and Woodcome, H. A. (1975) Corneal injuries during general anesthesia, Anesth. Analg., 54, 465–467.

    Article  CAS  PubMed  Google Scholar 

  3. Batra, Y. K., and Bali, I. M. (1977) Corneal abrasions during general anesthesia, Anesth. Analg., 56, 363–365.

    Article  CAS  PubMed  Google Scholar 

  4. Cucchiara, R. F., and Black, S. (1988) Corneal abrasion during anesthesia and surgery, Anesthesiology, 69, 978–979.

    Article  CAS  PubMed  Google Scholar 

  5. Roth, S., Thisted, R. A., Erickson, J. P., Black, S., and Schreider, B. D. (1996) Eye injuries after nonocular surgery. A study of 60,965 anesthetics from 1988 to 1992, Anesthesiology, 85, 1020–1027.

    Article  CAS  PubMed  Google Scholar 

  6. White, E., and Crosse, M. M. (1998) The aetiology and prevention of peri-operative corneal abrasions, Anaesthesia, 53, 157–161.

    Article  CAS  PubMed  Google Scholar 

  7. Alves, M., Fonseca, E. C., Alves, M. F., Malki, L. T., Arruda, G. V., Reinach, P. S., and Rocha, E. M. (2013) Dry eye disease treatment: a systematic review of published trials and a critical appraisal of therapeutic strategies, Ocul. Surf., 11, 181–192.

    Article  PubMed  Google Scholar 

  8. Dogru, M., Nakamura, M., Shimazaki, J., and Tsubota, K. (2013) Changing trends in the treatment of dry-eye disease, Expert. Opin. Investig. Drugs, 22, 1581–1601.

    Article  CAS  PubMed  Google Scholar 

  9. Cross, D. A., and Krupin, T. (1977) Implications of the effects of general anesthesia on basal tear production, Anesth. Analg., 56, 35–37.

    Article  CAS  PubMed  Google Scholar 

  10. Hrazdirova, V., Navratilova, B., and Ventrubova, R. (1990) Use of contact lenses during general anesthesia, Cesk. Oftalmol., 46, 223–229.

    CAS  PubMed  Google Scholar 

  11. Krupin, T., Cross, D. A., and Becker, B. (1977) Decreased basal tear production associated with general anesthesia, Arch. Ophthalmol., 95, 107–108.

    Article  CAS  PubMed  Google Scholar 

  12. Tikhomirova, N. K., Averina, O. A., Chemodanov, D. V., Ishutina, I. E., Sotnikova, L. F., Neverovsky, A. E., Zernii, E. Y., Philippov, P. P., and Senin, I. I. (2015) Development of dry eye syndrome under conditions of general anesthesia, Proc. Int. Sci. Pract. Conf. “Current problems and advances in medicine”, Vol. 2, pp. 60–62.

    Google Scholar 

  13. Gild, W. M., Posner, K. L., Caplan, R. A., and Cheney, F. W. (1992) Eye injuries associated with anesthesia. A closed claims analysis, Anesthesiology, 76, 204–208.

    Article  CAS  PubMed  Google Scholar 

  14. Wipperman, J. L., and Dorsch, J. N. (2013) Evaluation and management of corneal abrasions, Am. Fam. Physician, 87, 114–120.

    PubMed  Google Scholar 

  15. Lemp, M. A. (1995) Report of the national eye institute/industry workshop on clinical trials in dry eyes, CLAO J., 21, 221–232.

    CAS  PubMed  Google Scholar 

  16. Bhattacharya, D., Ning, Y., Zhao, F., Stevenson, W., Chen, R., Zhang, J., and Wang, M. (2015) Tear production after bilateral main lacrimal gland resection in rabbits, Invest. Ophthalmol. Vis. Sci., 56, 7774–7783.

    Article  PubMed  Google Scholar 

  17. Gautheron, P. D., Lotti, V. J., and Le Douarec, J. C. (1979) Tear film breakup time prolonged with unmedicated cellulose polymer inserts, Arch. Ophthalmol., 97, 1944–1947.

    Article  CAS  PubMed  Google Scholar 

  18. Gulidova, O. V., Liubitskii, O. B., Klebanov, G. I., and Chesnokova, N. B. (1999) Changes in the antioxidative activity of tears during experimental eye burns, Bull. Exp. Biol. Med., 128, 571–574.

    Article  CAS  Google Scholar 

  19. Zernii, E. Y., Baksheeva, V. E., Iomdina, E. N., Averina, O. A., Permyakov, S. E., Philippov, P. P., Zamyatnin, A. A., and Senin, I. I. (2016) Rabbit models of ocular diseases: new relevance for classical approaches, CNS Neurol. Disord. Drug Targets, 15, 267–291.

    Article  CAS  PubMed  Google Scholar 

  20. Gogia, R., Richer, S. P., and Rose, R. C. (1998) Tear fluid content of electrochemically active components including water soluble antioxidants, Curr. Eye Res., 17, 257–263.

    Article  CAS  PubMed  Google Scholar 

  21. Choy, C. K., Cho, P., Chung, W. Y., and Benzie, I. F. (2001) Water-soluble antioxidants in human tears: effect of the collection method, Invest. Ophthalmol. Vis. Sci., 42, 3130–3134.

    CAS  PubMed  Google Scholar 

  22. Aragona, P., Aguennouz, M., Rania, L., Postorino, E., Sommario, M. S., Roszkowska, A. M., De Pasquale, M. G., Pisani, A., and Puzzolo, D. (2015) Matrix metalloproteinase 9 and transglutaminase 2 expression at the ocular surface in patients with different forms of dry eye disease, Ophthalmology, 122, 62–71.

    Article  PubMed  Google Scholar 

  23. Runstrom, G., Mann, A., and Tighe, B. (2013) The fall and rise of tear albumin levels: a multifactorial phenomenon, Ocul. Surf., 11, 165–180.

    Article  PubMed  Google Scholar 

  24. Chen, Y., Mehta, G., and Vasiliou, V. (2009) Antioxidant defenses in the ocular surface, Ocul. Surf., 7, 176–185.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Behndig, A., Svensson, B., Marklund, S. L., and Karlsson, K. (1998) Superoxide dismutase isoenzymes in the human eye, Invest. Ophthalmol. Vis. Sci., 39, 471–475.

    CAS  PubMed  Google Scholar 

  26. Gukasyan, H. J., Kim, K. J., Lee, V. H., and Kannan, R. (2007) Glutathione and its transporters in ocular surface defense, Ocul. Surf., 5, 269–279.

    Article  PubMed  Google Scholar 

  27. Hao, Y. H., Kuang, Z. H., Xu, Y., Walling, B. E., and Lau, G. W. (2013) Pyocyanin-induced mucin production is associated with redox modification of FOXA2, Respir. Res., 14, doi: 10.1186/1465-9921-14-82.

    Google Scholar 

  28. Grover, V. K., Kumar, K. V., Sharma, S., Sethi, N., and Grewal, S. P. (1998) Comparison of methods of eye protection under general anaesthesia, Can. J. Anaesth., 45, 575–577.

    Article  CAS  PubMed  Google Scholar 

  29. Schmidt, P., and Boggild-Madsen, N. B. (1981) Protection of the eyes with ophthalmic ointments during general anaesthesia, Acta Ophthalmol. (Copenh.), 59, 422–427.

    Article  CAS  Google Scholar 

  30. Siffring, P. A., and Poulton, T. J. (1987) Prevention of ophthalmic complications during general anesthesia, Anesthesiology, 66, 569–570.

    Article  CAS  PubMed  Google Scholar 

  31. Ganidagli, S., Cengi, M., Becerik, C., Oguz, H., and Kilic, A. (2004) Eye protection during general anaesthesia: comparison of four different methods, Eur. J. Anaesthesiol., 21, 665–667.

    Article  CAS  PubMed  Google Scholar 

  32. Cejkova, J., and Cejka, C. (2015) The role of oxidative stress in corneal diseases and injuries, Histol. Histopathol., 30, 893–900.

    CAS  PubMed  Google Scholar 

  33. Pinazo-Duran, M. D., Gallego-Pinazo, R., Garcia-Medina, J. J., Zanon-Moreno, V., Nucci, C., Dolz-Marco, R., Martinez-Castillo, S., Galbis-Estrada, C., Marco-Ramirez, C., Lopez-Galvez, M. I., Galarreta, D. J., and Diaz-Llopis, M. (2014) Oxidative stress and its downstream signaling in aging eyes, Clin. Interv. Aging, 9, 637–652.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tsubota, K., Kawashima, M., Inaba, T., Dogru, M., Ogawa, Y., Nakamura, S., Shinmura, K., Higuchi, A., and Kawakita, T. (2010) The era of antiaging ophthalmology comes of age: antiaging approach for dry eye treatment, Ophthalmic Res., 44, 146–154.

    Article  PubMed  Google Scholar 

  35. Brzheskiy, V. V., Efimova, E. L., Vorontsova, T. N., Alekseev, V. N., Gusarevich, O. G., Shaidurova, K. N., Ryabtseva, A. A., Andryukhina, O. M., Kamenskikh, T. G., Sumarokova, E. S., Miljudin, E. S., Egorov, E. A., Lebedev, O. I., Surov, A. V., Korol, A. R., Nasinnyk, I. O., Bezditko, P. A., Muzhychuk, O. P., Vygodin, V. A., Yani, E. V., Savchenko, A. Y., Karger, E. M., Fedorkin, O. N., Mironov, A. N., Ostapenko, V., Popeko, N. A., Skulachev, V. P., and Skulachev, M. V. (2015) Results of a multicenter, randomized, double-masked, placebo-controlled clinical study of the efficacy and safety of visomitin eye drops in patients with dry eye syndrome, Adv. Ther., 32, 1263–1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Petrov, A., Perekhvatova, N., Skulachev, M., Stein, L., and Ousler, G. (2016) SkQ1 ophthalmic solution for dry eye treatment: results of a phase 2 safety and efficacy clinical study in the environment and during challenge in the controlled adverse environment model, Adv. Ther., 33, 96–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yani, E. V., Katargina, L. A., Chesnokova, N. V., Beznos, O. V., Savchenko, A. Yu., Vigodin, V. A., Gudkova, E. Yu., Zamyatnin, A. A., Jr., and Skulachev, M. V. (2012) The first experience of using vizomitin drug in the treatment of “dry eye”, Prakt. Med., 1, 134–137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Yu. Zernii or I. I. Senin.

Additional information

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM16-243, October 24, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zernii, E.Y., Golovastova, M.O., Baksheeva, V.E. et al. Alterations in tear biochemistry associated with postanesthetic chronic dry eye syndrome. Biochemistry Moscow 81, 1549–1557 (2016). https://doi.org/10.1134/S0006297916120166

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916120166

Key words

Navigation