Skip to main content
Log in

Interaction of chloramphenicol tripeptide analogs with ribosomes

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Chloramphenicol amine peptide derivatives containing tripeptide fragments of regulatory “stop peptides”–MRL, IRA, IWP–were synthesized. The ability of the compounds to form ribosomal complexes was studied by displacement of the fluorescent erythromycin analog from its complex with E. coli ribosomes. It was found that peptide chloramphenicol analogs are able to bind to bacterial ribosomes. The dissociation constants were 4.3-10 μM, which is 100-fold lower than the corresponding values for chloramphenicol amine–ribosome complex. Interaction of the chloramphenicol peptide analogs with ribosomes was simulated by molecular docking, and the most probable contacts of “stop peptide” motifs with the elements of nascent peptide exit tunnel were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Bhoc:

N-benzhydryloxycarbonyl

Boc:

tert-butyloxycarbonyl

BODIPY:

(4,4-difluoro-4-bora-5,7-dimethyl)-3a,4a-diaza-s-indacene-3-pentanoic acid

Caeg:

3-(2-aminoethyl)-3-[2-(cytosin-1-yl)acetyl]glycine

DCC:

1,3-dicyclohexylcarbodiimide

DIPEA:

diisopropylethylamine

Ery:

erythromycin

Fmoc:

fluorenylmethyloxycarbonyl

LCMS:

liquid chromatography-mass spectrometry

PNA:

peptide-nucleic acids

PTC:

peptidyl transferase center

RT:

ribosomal tunnel

TFA:

trifluoroacetic acid

References

  1. Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution, Science, 289, 905–920.

    Article  CAS  PubMed  Google Scholar 

  2. Nissen, P., Hansen, J., Ban, N., Moore, P. B., and Steitz, T. A. (2000) The structural basis of ribosome activity in peptide bond synthesis, Science, 289, 920–930.

    Article  CAS  PubMed  Google Scholar 

  3. Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Gat, S., Agmon, I., Bartels, H., Franceschi, F., and Yonath, A. (2001) High-resolution structure of the large ribosomal subunit from a mesophilic eubacterium, Cell, 107, 679–688.

    Article  CAS  PubMed  Google Scholar 

  4. Bogdanov, A. A., Sumbatyan, N. V., Shishkina, A. V., Karpenko, V. V., and Korshunova, G. A. (2010) Ribosomal tunnel and translation regulation, Biochemistry (Moscow), 75, 1501–1516.

    Article  CAS  Google Scholar 

  5. Kolb, V. A. (2010) Properties of intraribosomal part of nascent polypeptide, Biochemistry (Moscow), 75, 1517–1527.

    Article  CAS  Google Scholar 

  6. Wilson, D. N., and Beckman, R. (2011) The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling, Curr. Opin. Struct. Biol., 21, 274–282.

    Article  CAS  PubMed  Google Scholar 

  7. Subramanian, S. L., Ramu, H., and Mankin, A. S. (2012) in Antibiotic Discovery and Development (Dougherty, T. J., and Pucci, M. J., eds.) Springer, pp. 455–484.

  8. La Marre, J., Mendes, R. E., Szal, T., Schwarz, S., Jones, R. N., and Mankin, A. S. (2013) The genetic environment of the cfr gene and the presence of other mechanisms account for the very high linezolid resistance of Staphylococcus epidermidis isolate 426-3147L, Antimicrob. Agents Chemother., 57, 1173–1179.

    Article  CAS  Google Scholar 

  9. Mankin, A. S. (2006) Nascent peptide in the “birth canal” of the ribosome, Trends Biochem. Sci., 31, 11–13.

    Article  CAS  PubMed  Google Scholar 

  10. Cruz-Vera, L. R., Sachs, M. S., Sguires, C. L., and Yanofsky, C. (2011) Nascent polypeptide sequences that influence ribosome function, Curr. Opin. Microbiol., 14, 160–166.

    Article  CAS  PubMed  Google Scholar 

  11. Ito, K., and Chiba, S. (2013) Arrest peptides: cis-acting modulators of translation, Annu. Rev. Biochem., 82, 171–202.

    Article  CAS  PubMed  Google Scholar 

  12. Arenz, S., Meydan, S., Starosta, A. L., Berninghausen, O., Beckmann, R., Vazquez-Laslop, N., and Wilson, D. N. (2014) Drug sensing by the ribosome induces translational arrest via active site perturbation, Mol. Cell, 56, 446–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roy, R. N., Lomakin, I. B., Gagnon, M. G., and Steitz, T. A. (2015) The mechanism of inhibition of protein synthesis by the proline-rich peptide oncocin, Nat. Struct. Mol. Biol., 22, 466–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Seefeldt, A. C., Nguyen, F., Antunes, S., Perebaskine, N., Graf, M., Arenz, S., Inampudi, K. K., Douat, C., Guichard, G., Wilson, D. N., and Innis, C. A. (2015) The proline-rich antimicrobial peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex, Nat. Struct. Mol. Biol., 22, 470–475.

    Article  CAS  PubMed  Google Scholar 

  15. Hansen, J. L., Moore, P. B., and Steitz, T. A. (2003) Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit, J. Mol. Biol., 330, 1061–1075.

    Article  CAS  PubMed  Google Scholar 

  16. Schlunzen, F., Zarivach, R., Harms, J., Bashan, A., Tocilj, A., Albrecht, R., Yonath, A., and Franceschi, F. (2001) Structural basis for the interaction of antibiotics with the peptidyl transferase center in eubacteria, Nature, 413, 814–821.

    Article  CAS  PubMed  Google Scholar 

  17. Lu, J., Hua, Z., Kobertz, W. R., and Detsch, C. (2013) Nascent peptide side-chains induce rearrangements in distinct locations of the ribosomal tunnel, J. Mol. Biol., 411, 499–510.

    Article  Google Scholar 

  18. Woolstenhulme, C. J., Parajuli, S., Healey, D. W., Valverde, D. P., Petersen, E. N., Starosta, A. L., Guydosh, N. R., Johnson, W. E., Wilson, D. N., and Buskirk, A. R. (2013) Nascent peptides that block protein synthesis in bacteria, Proc. Natl. Acad. Sci. USA, 110, 878–887.

    Article  Google Scholar 

  19. Mamos, P., Krokidis, M. G., Papadas, A., Karahalios, P., Starosta, A. L., Wilson, D. N., Kalpaxis, D. L., and Dinos, G. P. (2013) On the use of the antibiotic chloramphenicol to target polypeptide chain mimics to the ribosomal exit tunnel, Biochimie, 95, 1765–1772.

    Article  CAS  PubMed  Google Scholar 

  20. Arenz, S., Ramu, H., Gupta, P., Berninghausen, O., Beckmann, R., Vazquez-Laslop, N., Mankin, A. S., and Wilson, D. N. (2014) Molecular basis for erythromycindependent ribosome stalling during translation of the ErmBL leader peptide, Nat. Commun., 5, 3501.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fischer, N., Neumann, P., Konevega, A. L., Bock, L. V., Ficner, R., Rodnina, M. V., and Stark, H. (2015) Structure of the E. coli ribosome–EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM, Nature, 520, 567–570.

    Article  PubMed  Google Scholar 

  22. Sumbatyan, N. V., Korshunova, G. A., and Bogdanov, A. A. (2003) Peptide derivatives of antibiotics tylosin and desmycosin, protein synthesis inhibitors, Biochemistry (Moscow), 68, 1156–1158.

    Article  CAS  Google Scholar 

  23. Starosta, A. L., Karpenko, V. V., Shishkina, A. V., Mikolajka, A., Sumbatyan, N. V., Schluenzen, F., Korshunova, G. A., Bogdanov, A. A., and Wilson, D. N. (2010) Interplay between the ribosomal tunnel, nascent chain, and macrolides influences drug inhibition, Chem. Biol., 17, 504–514.

    Article  CAS  PubMed  Google Scholar 

  24. Shishkina, A., Makarov, G., Tereshchenkov, A., Korshunova, G., Sumbatyan, N., Golovin, A., Svetlov, M., and Bogdanov, A. (2013) Conjugates of amino acids and peptides with 5-O-mycaminosyltylonolide and their interaction with the ribosomal exit tunnel, Bioconj. Chem., 24, 1861–1869.

    Article  CAS  Google Scholar 

  25. Vazquez-Laslop, N., Ramu, H., and Mankin, A. (2011) in Ribosomes: Structure, Function and Dynamics (Rodnina, M. V., Wintermeyer, W., and Green, R., eds.) Springer, WienN.Y., pp. 377–392.

  26. Gumbart, J., Schreiner, E., Wilson, D., Beckmann, R., and Schulten, K. (2012) Mechanism of SecM-mediated stalling in the ribosome, Biophys. J., 103, 331–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nielsen, P. E. (1998) Structural and biological properties of peptide nucleic acid (PNA), Pure Appl. Chem., 70, 105–110.

    Article  CAS  Google Scholar 

  28. Lundin, K. E., Good, L., Stromberg, R., Graslund, A., and Smith, C. I. E. (2006) in Advances in Genetics (Hall, J. C., ed.), vol. 56, Academic Press, Waltham, pp. 1–51.

    Article  CAS  Google Scholar 

  29. Good, L., and Nielsen, P. E. (1998) Inhibition of translation and bacterial growth by peptide nucleic acid targeted to ribosomal RNA, Proc. Natl. Acad. Sci. USA, 3, 2073–2076.

    Article  Google Scholar 

  30. Rebstock, M. C., Crooks, H. M., Controulis, J., and Bartz, Q. R. (1949) Chloramphenicol (Chloromycetin). IV. Chemical Studies, J. Am. Chem. Soc., 71, 2458–2462.

    Article  CAS  Google Scholar 

  31. Trott, O., and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem., 31, 455–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dunkle, J. A., Xiong, L., Mankin A. S., and Cate, J. H. D. (2010) Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action, Proc. Natl. Acad. Sci. USA, 107, 17152–17157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stewart, J. J. (2013) Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters, J. Mol. Model., 19, 1–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yan, K., Hunt, E., Berge, J., May, E., Copeland, R. A., and Gontarek, R. R. (2005) Fluorescence polarization method to characterize macrolide–ribosome interactions, Antimicrob. Agents Chemother., 49, 3367–3372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, Z. X. (1995) An exact mathematical expression for describing competitive binding of two different ligands to a protein molecule, FEBS Lett., 360, 111–114.

    Article  CAS  PubMed  Google Scholar 

  36. Shishkina, A. V., Tereshchenkov, A. G., Sumbatyan, N. V., Korshunova, G. A., and Bogdanov, A. A. (2013) Characterization of tylosin-related macrolides–ribosome interactions by fluorescence polarization method, FEBS J., 280 (Suppl. 1), 356.

    Google Scholar 

  37. Tereshchenkov, A., Sergeeva, V., Shishkina, A., Sumbatyan, N., and Bogdanov, A. (2014) in EMBO Conference Series: Chemical Biology 2014, Mera Druck GmbH, Sanghausen, pp. 263–263.

    Google Scholar 

  38. Tereshchenkov, A. G. (2013) in Kazan Summer School on Chemoinformatics, Innovation Publishing House “Butlerov Heritage”, Kazan, pp. 33–33.

    Google Scholar 

  39. Seidelt, B., Innis, C. A., Wilson, D. N., Gartmann, M., Armache, J.-P., Villa, E., Trabuco, L. G., Becker, T., Mielke, T., Schulten, K., Steitz, T. A., and Beckmann, R. (2009) Structural insight into nascent polypeptide chainmediated translational stalling, Science, 326, 1412–1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sohmen, D., Chiba, S., Shimokawa-Chiba, N., Innis, C. A., Berninghausen, O., Beckmann, R., Ito, K., and Wilson, D. N. (2015) Structure of the Bacillus subtilis 70S ribosome reveals the basis for species-specific stalling, Nat. Commun., 6, 6941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Sumbatyan.

Additional information

Published in Russian in Biokhimiya, 2016, Vol. 81, No. 4, pp. 538-547.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM15-322, January 31, 2016.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshchenkov, A.G., Shishkina, A.V., Tashlitsky, V.N. et al. Interaction of chloramphenicol tripeptide analogs with ribosomes. Biochemistry Moscow 81, 392–400 (2016). https://doi.org/10.1134/S000629791604009X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791604009X

Keywords

Navigation