Skip to main content
Log in

Analysis of extracellular vesicles using magnetic nanoparticles in blood of patients with acute coronary syndrome

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) are released from various cell types and play an important role in intercellular interactions. In our study, we investigated abundance of individual EVs in patients with acute forms of ischemic heart disease. Previously, we developed an approach for individual analysis of EVs conjugated with magnetic nanoparticles (MNPs), which was applied in the current study for analyzing phenotypic composition of EVs (by staining for markers CD31, CD41a, and CD63). EVs were isolated using fluorescently labeled MNPs containing anti-CD31, CD41a, or CD63 antibodies and analyzed by combining fluorescently labeled anti-CD41a and CD63, CD31 and CD63, or CD41a and CD31 antibodies, respectively. EVs were analyzed in 30 individuals: 17 healthy volunteers and 13 patients with acute coronary syndrome (ACS). Six and seven ACS patients were with acute myocardial infarction and unstable angina, respectively. It was found that patients with ACS and healthy volunteers contained a dominant subset of EVs expressing surface CD41a antigen, suggesting that they originated from platelets. In addition, the total number of EVs isolated using either of the surface markers examined in our study was higher in patients with ACS compared to healthy volunteers. The subgroup of patients with acute myocardial infarction was found to contain significantly higher number of blood EVs compared to the control group. Moreover, increased number of EVs in patients with ACS is mainly due to the increased number of EVs in the subset of EVs bearing CD41a. By analyzing individual EVs, we found that plasma of patients with ACS, particularly upon developing of myocardial infarction, contained dominant platelet-derived EVs fraction, which may reflect activation of platelets in such patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ong, S.-G., Lee, W. H., Huang, M., Dey, D., Kodo, K., Sanchez-Freire, V., Gold, J. D., and Wu, J. C. (2014) Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer, Circulation, 130, S60–S69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., and Mi, S. (2015) Exosome and exosomal microRNA: trafficking, sorting, and function, Genom. Proteom. Bioinform., 13, 17–24.

    Article  Google Scholar 

  3. Yuana, Y., Sturk, A., and Nieuwland, R. (2013) Extracellular vesicles in physiological and pathological conditions, Blood Rev., 27, 31–39.

    Article  CAS  PubMed  Google Scholar 

  4. Record, M., Carayon, K., Poirot, M., and Silvente-Poirot, S. (2014) Exosomes as new vesicular lipid transporters involved in cell–cell communication and various pathophysiologies, Biochim. Biophys. Acta, 1841, 108–120.

    Article  CAS  PubMed  Google Scholar 

  5. Rautou, P. E., Vion, A. C., Amabile, N., Chironi, G., Simon, A., Tedgui, A., and Boulanger, C. M. (2011) Microparticles, vascular function, and atherothrombosis, Circ. Res., 109, 593–606.

    Article  CAS  PubMed  Google Scholar 

  6. Ayers, L., Harrison, P., Kohler, M., and Ferry, B. (2014) Procoagulant and platelet-derived microvesicle absolute counts determined by flow cytometry correlates with a measurement of their functional capacity, J. Extracell. Vesicles, doi: 10.3402/jev.v3.25348.

    Google Scholar 

  7. Lacroix, R., Dubois, C., Leroyer, A. S., Sabatier, F., and Dignat-George, F. (2013) Revisited role of microparticles in arterial and venous thrombosis, J. Thromb. Haemost., 11 (Suppl. 1), 24–35.

    Article  PubMed  Google Scholar 

  8. Leroyer, A. S., Tedgui, A., and Boulanger, C. M. (2008) Role of microparticles in atherothrombosis, J. Intern. Med., 263, 528–537.

    Article  CAS  PubMed  Google Scholar 

  9. Nomura, S., and Shimizu, M. (2015) Clinical significance of procoagulant microparticles, J. Intens. Care, 3, 2.

    Article  Google Scholar 

  10. De Toro, J., Herschlik, L., Waldner, C., and Mongini, C. (2015) Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications, Front. Immunol., 6, 203.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zocco, D., Ferruzzi, P., Cappello, F., Kuo, W. P., and Fais, S. (2014) Extracellular vesicles as shuttles of tumor biomarkers and anti-tumor drugs, Front. Oncol., 4, 267.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Colombo, M., Moita, C., Van Niel, G., Kowal, J., Vigneron, J., Benaroch, P., Manel, N., Moita, L. F., Thery, C., and Raposo, G. (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles, J. Cell Sci., 126, 5553–5565.

    Article  CAS  PubMed  Google Scholar 

  13. Besancenot, R., Chaligne, R., Tonetti, C., Pasquier, F., Marty, C., Lecluse, Y., Vainchenker, W., Constantinescu, S. N., and Giraudier, S. (2010) A senescence-like cell-cycle arrest occurs during megakaryocytic maturation: implications for physiological and pathological megakaryocytic proliferation, PLoS Biol., 8.

  14. Aatonen, M. T., Ohman, T., Nyman, T. A., Laitinen, S., Gronholm, M., and Siljander, P. R. (2014) Isolation and characterization of platelet-derived extracellular vesicles, J. Extracell. Vesicles, 3, 1–15.

    Google Scholar 

  15. Amabile, N., Cheng, S., Renard, J. M., Larson, M. G., Ghorbani, A., Mc Cabe, E., Griffin, G., Guerin, C., Ho, J. E., Shaw, S. Y., Cohen, K. S., Vasan, R. S., Tedgui, A., Boulanger, C. M., and Wang, T. J. (2014) Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study, Eur. Heart J., 1-8.

  16. Li, P., and Qin, C. (2015) Elevated circulating VE-cadherin+ CD144+ endothelial microparticles in ischemic cerebrovascular disease, Thromb. Res., 135, 375–381.

    Article  CAS  PubMed  Google Scholar 

  17. Hu, S.-S., Zhang, H.-G., Zhang, Q.-J., and Xiu, R.-J. (2014) Small-size circulating endothelial microparticles in coronary artery disease, PLoS One, 9, e104528.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jung, C., Sorensson, P., Saleh, N., Arheden, H., Ryden, L., and Pernow, J. (2012) Circulating endothelial and platelet derived microparticles reflect the size of myocardium at risk in patients with ST-elevation myocardial infarction, Atherosclerosis, 221, 226–231.

    Article  CAS  PubMed  Google Scholar 

  19. Gyorgy, B., Szabo, T. G., Pasztoi, M., Pal, Z., Misjak, P., Aradi, B., Laszlo, V., Pallinger, E., Pap, E., Kittel, A., Nagy, G., Falus, A., and Buzas, E. I. (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles, Cell. Mol. Life Sci., 68, 2667–2688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stepien, E., Stankiewicz, E., Zalewski, J., Godlewski, J., Zmudka, K., and Wybranska, I. (2012) Number of microparticles generated during acute myocardial infarction and stable angina correlates with platelet activation, Arch. Med. Res., 43, 31–35.

    Article  PubMed  Google Scholar 

  21. Skeppholm, M., Mobarrez, F., Malmqvist, K., and Wallen, H. (2012) Platelet-derived microparticles during and after acute coronary syndrome, Thromb. Haemost., 107, 1122–1129.

    Article  CAS  PubMed  Google Scholar 

  22. Thygesen, K., Alpert, J. S., Jaffe, A. S., Simoons, M. L., Chaitman, B. R., White, H. D., (2012) Third universal definition of myocardial infarction, J. Am. Coll. Cardiol., 60, 1581–1598.

    Article  PubMed  Google Scholar 

  23. Van der Pol, E., Coumans, F. A. W., Grootemaat, A. E., Gardiner, C., Sargent, I. L., Harrison, P., Sturk, A., Van Leeuwen, T. G., and Nieuwland, R. (2014) Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing, J. Thromb. Haemost., 12, 1182–1192.

    Article  PubMed  Google Scholar 

  24. Witwer, K. W., Buzas, E. I., Bemis, L. T., Bora, A., Lasser, C., Lotvall, J., Nolte’t-Hoen, E. N., Piper, M. G., Sivaraman, S., Skog, J., Thery, C., Wauben, M. H., and Hochberg, F. (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research, J. Extracell. Vesicles, 2.

  25. Steg, P. G., James, S. K., Atar, D., Badano, L. P., Blomstrom-Lundqvist, C., Borger, M. A., Di Mario, C., Dickstein, K., Ducrocq, G., Fernandez-Aviles, F., Gershlick, A. H., Giannuzzi, P., Halvorsen, S., Huber, K., Juni, P., Kastrati, A., Knuuti, J., Lenzen, M. J., Mahaffey, K. W., Valgimigli, M., Van’t Hof, A., Widimsky, P., and Zahger, D. (2012) ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation, Eur. Heart J., 33, 2569–2619.

    Article  CAS  PubMed  Google Scholar 

  26. Hamm, C. W., Bassand, J.-P., Agewall, S., Bax, J., Boersma, E., Bueno, H., Caso, P., Dudek, D., Gielen, S., Huber, K., Ohman, M., Petrie, M. C., Sonntag, F., Uva, M. S., Storey, R. F., Wijns, W., and Zahger, D. (2011) ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the task force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevatio, Eur. Heart J., 32, 2999–3054.

    Article  PubMed  Google Scholar 

  27. Arakelyan, A., Ivanova, O., Vasilieva, E., Grivel, J.-C., and Margolis, L. (2015) Antigenic composition of single nanosized extracellular blood vesicles, Nanomedicine, 11, 489–498.

    CAS  PubMed  Google Scholar 

  28. Arakelyan, A., Fitzgerald, W., Margolis, L., and Grivel, J. (2013) Nanoparticle-based flow virometry for the analysis of individual virions, J. Clin. Invest., 123, 3716–3727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Campbell, E. C., Antoniou, A. N., and Powis, S. J. (2012) The multi-faceted nature of HLA class I dimer molecules, Immunology, 136, 380–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Andre, F., Chaput, N., Schartz, N. E. C., Flament, C., Aubert, N., Bernard, J., Lemonnier, F., Raposo, G., Escudier, B., Hsu, D.-H., Tursz, T., Amigorena, S., Angevin, E., and Zitvogel, L. (2004) Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells, J. Immunol., 172, 2126–2136.

    Article  CAS  PubMed  Google Scholar 

  31. Lynch, S., Santos, S. G., Campbell, E. C., Nimmo, A. M. S., Botting, C., Prescott, A., Antoniou, A. N., and Powis, S. J. (2009) Novel MHC class I structures on exosomes, J. Immunol., 183, 1884–1891.

    Article  CAS  PubMed  Google Scholar 

  32. Thery, C. (2011) Exosomes: secreted vesicles and intercellular communications, F1000 Biol. Rep., 3, 15.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Biasucci, L. M., Porto, I., Di Vito, L., De Maria, G. L., Leone, A. M., Tinelli, G., Tritarelli, A., Di Rocco, G., Snider, F., Capogrossi, M. C., and Crea, F. (2012) Differences in microparticle release in patients with acute coronary syndrome and stable angina, Circ. J., 76, 2174–2182.

    Article  CAS  PubMed  Google Scholar 

  34. Kafian, S., Mobarrez, F., Wallen, H., and Samad, B. (2014) Association between platelet reactivity and circulating platelet-derived microvesicles in patients with acute coronary syndrome, Platelets, 7104, 1–7.

    Google Scholar 

  35. Morel, O., Pereira, B., Averous, G., Faure, A., Jesel, L., Germain, P., Grunebaum, L., Ohlmann, P., Freyssinet, J. M., Bareiss, P., and Toti, F. (2009) Increased levels of procoagulant tissue factor-bearing microparticles within the occluded coronary artery of patients with ST-segment elevation myocardial infarction: role of endothelial damage and leukocyte activation, Atherosclerosis, 204, 636–641.

    Article  CAS  PubMed  Google Scholar 

  36. Lovren, F., and Verma, S. (2013) Evolving role of microparticles in the pathophysiology of endothelial dysfunction, Clin. Chem., 59, 1166–1174.

    Article  CAS  PubMed  Google Scholar 

  37. Helbing, T. (2014) Role of microparticles in endothelial dysfunction and arterial hypertension, World J. Cardiol., 6, 1135.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bobrie, A., Colombo, M., Krumeich, S., Raposo, G., and Thery, C. (2012) Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation, J. Extracell. Vesicles, 1, 1–11.

    Google Scholar 

  39. Metzelaar, M. J., Wijngaard, P. L. J., Peters, P. J., Sixma, J. J., Nieuwenhuis, H. K., and Clevers, H. C. (1991) CD63 antigen: a novel lysosomal membrane glycoprotein, cloned by a screening procedure for intracellular antigens in eukaryotic cells, J. Biol. Chem., 266, 3239–3245.

    CAS  PubMed  Google Scholar 

  40. Piccin, A., Murphy, W. G., and Smith, O. P. (2007) Circulating microparticles: pathophysiology and clinical implications, Blood Rev., 21, 157–171.

    Article  CAS  PubMed  Google Scholar 

  41. Antwi-Baffour, S., Adjei, J., Aryeh, C., Kyeremeh, R., Kyei, F., and Seidu, M. A. (2015) Understanding the biosynthesis of platelets-derived extracellular vesicles, Immun. Inflamm. Dis., 3, 133–140.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Min, P.-K., Kim, J.-Y., Chung, K.-H., Lee, B. K., Cho, M., Lee, D.-L., Hong, S.-Y., Choi, E.-Y., Yoon, Y.-W., Hong, B.-K., Rim, S.-J., and Kwon, H. M. (2013) Local increase in microparticles from the aspirate of culprit coronary arteries in patients with ST-segment elevation myocardial infarction, Atherosclerosis, 227, 323–328.

    Article  CAS  PubMed  Google Scholar 

  43. Patrono, C., and Renda, G. (1997) Platelet activation and inhibition in unstable coronary syndromes, Am. J. Cardiol., 80, 17–20.

    Article  Google Scholar 

  44. Harker, L. A., and Ritchie, J. L. (1980) The role of platelets in acute vascular events, Circulation, 62, 13–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Lebedeva.

Additional information

Original Russian Text © M. S. Vagida, A. Arakelyan, A. M. Lebedeva, J.-Ch. Grivel, A. V. Shpektor, E. Yu. Vasilieva, L. B. Margolis, 2016, published in Biokhimiya, 2016, Vol. 81, No. 4, pp. 527-537.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM15-312, February 7, 2016.

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vagida, M.S., Arakelyan, A., Lebedeva, A.M. et al. Analysis of extracellular vesicles using magnetic nanoparticles in blood of patients with acute coronary syndrome. Biochemistry Moscow 81, 382–391 (2016). https://doi.org/10.1134/S0006297916040088

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916040088

Keywords

Navigation