Skip to main content

Advertisement

Log in

T-regulatory cells as part of strategy of immune evasion by pathogens

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Under physiological conditions, regulatory processes can suppress the immune response after elimination of a pathogen and restore homeostasis through the destruction and suppression of obsolete effector cells of the immune system. The main players in this process are T-regulatory cells (Tregs) and immature dendritic cells, which suppress the immune response by their own products and/or by inducing synthesis of immunosuppressive interleukins IL-10, IL-35, and transforming growth factor (TGF-ß) by other cells. This mechanism is also used by widespread “successful” pathogens that are capable of chronically persisting in the human body — herpes virus, hepatitis viruses, human immunodeficiency virus, Mycobacterium tuberculosis, Helicobacter pylori, and others. During coevolution of microbial pathogens and the host immune system, the pathogens developed sophisticated strategies for evading the host defense, so-called immune evasion. In particular, molecular structures of pathogens during the interaction with dendritic cells via activating and inhibitory receptors can change intracellular signal transduction, resulting in block of maturation of dendritic cells. Immature dendritic cells become tolerogenic and cause differentiation of Tregs from the conventional T-cell CD4+. Microbial molecules can also react directly with Tregs through innate immune receptors. Costimulation of Toll-like receptor 5 (TLR5) by flagellin increases the expression of the transcription factor Foxp3, which increases the suppressive activity of Treg cells. From all evasion mechanisms, the induction of immunosuppression by Treg through IL-10, IL-35, and TGF-ß appears most effective. This results in the suppression of inflammation and of adaptive immune responses against pathogens, optimizing the conditions for the survival of bacteria and viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B7:

a costimulatory molecule expressed on the surface of antigen-presenting cells (APCs)

CD4+ :

a marker expressed by helper and regulatory T-cells

CD4+CD25highFoxp3+ :

markers expressed by regulatory T-cells

CD4+Th2:

type 2 helper CD4+ T-cells

CD4+Treg or CD8+Treg:

regulatory T-cells

CD8+ :

a marker expressed by cytotoxic T-cells

CTLA-4:

an inhibitory molecule expressed by T-cells

FHA:

bacterial filamentous hemagglutinin adhesin

HIV:

human immunodeficiency virus

IL-10 and IL-35:

interleukins

LFA-3 and ICAM-1:

cell adhesion molecules

MHC I and II:

molecules of the major histocompatibility complex

PD1:

an inhibitory molecule expressed on dendritic cells (programmed cell death protein 1)

STAT:

intracellular signaling pathway (signal transducer and activator of transcription)

TAP:

transporter associated with antigen processing expressed in APCs

TCR:

T-cell receptor

TGF-β:

transforming growth factor-β

Th1:

type 1 helper CD4+ T-cells

TLR:

Toll-like receptor

References

  1. Playfair, J. H. L., and Bancroft, G. J. (2012) Infection and Immunity, 4th Edn., Oxford University Press, Oxford, pp. 115–120.

    Google Scholar 

  2. Tischler, A. D., and McKinney, J. D. (2011) in The Immune Response to Infection (Kaufmann, S. H. E., Rouse, B. T., and Sachs, D. L., eds.) ASM Press, Washington, DC, pp. 425–440.

  3. Sansonetti, P. J., and Puhar, A. (2011) in The Immune Response to Infection (Kaufmann, S. H. E., Rouse, B. T., and Sachs, D. L., eds.) ASM Press, Washington, DC, pp. 133–142.

  4. Garib, F. Yu. (2013) Interaction of Pathogens with Innate Immunity [in Russian], MSU, Moscow.

    Google Scholar 

  5. Garib, F. Yu., and Rizopulu, A. P. (2012) Interaction of pathogenic bacteria with host innate immunity, Infekts. Immun., 62, 581–596.

    Google Scholar 

  6. Gal-Mor, O., and Finlay, B. B. (2006) Pathogenicity islands: a molecular toolbox for bacterial virulence, Cell Microbiol., 8, 1707–1719.

    Article  CAS  PubMed  Google Scholar 

  7. Forsberg, A., Rosqvist, R., and Fallman, M. (2003) in Bacterial Evasion in Host Immune Responses (Henderson, B., and Oyston, P. C. E., eds.) Cambridge University Press, pp. 127–170.

  8. Pritchard, D., Hooi, D., Watson, E., Chow, S., Telford, G., Bycroft, B., Chhabra, C., Harty, C., Camara, M., Diggle, S., and Williams, P. (2003) in Bacterial Evasion in Host Immune Responses (Henderson, B., and Oyston, P. C. E., eds.) Cambridge University Press, pp. 201–222.

  9. Mesman, A. W., Zijlstra-Willems, E. M., Kaptein, T. M., de Swart, R. L., Davis, M. E., Ludlow, M., Duprex, W. P., Gack, M. U., Gringhuis, S. I., and Geijtenbeek, T. B. (2014) Measles virus suppresses RIG-I-like receptor activation in dendritic cells via DC-SIGN-mediated inhibition of PP1 phosphatases, Cell Host Microbe, 16, 31–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Murphy, K. P. (2012) Janeway’s Immunobiology, Garland Science, Taylor and Francis group, LLC.

    Google Scholar 

  11. Farrington, L., O’Neill, G., and Hill, A. B. (2011) in The Immune Response to Infection (Kaufmann, S. H. E., Rouse, B. T., and Sachs, D. L., eds.) ASM Press, Washington, DC, pp. 393–401.

  12. Sakaguchi, S., Vignali, D. A., Rudensky, A. Y., Niec, R. E., and Waldmann, H. (2013) The plasticity and stability of regulatory T-cells, Nat. Rev. Immunol., 13, 461–467.

    Article  CAS  PubMed  Google Scholar 

  13. Shevach, E. M. (2013) in Fundamental Immunology (Paul, W. E., ed.) Lippincott Williams and Wilkins, pp. 795–832.

  14. Buckner, J. H. (2010) Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T-cells in human autoimmune diseases, Nat. Rev. Immunol., 10, 849–859.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Wang, R., Wan, Q., Kozhaya, L., Fujii, H., and Unutmaz, D. (2008) Identification of a regulatory T-cell specific cell surface molecule that mediates suppressive signals and induces Foxp3 expression, PLoS One, 3, e2705.

    Article  Google Scholar 

  16. Collison, L. W., Chaturvedi, V., Henderson, A. L., Giacomin, P. R., Guy, C., Bankoti, J., Finkelstein, D., Forbes, K., Workman, C. J., Brown, S. A., Rehg, J. E., Jones, M. L., Ni, H. T., Artis, D., Turk, M. J., and Vignali, D. A. (2010) IL-35-mediated induction of a potent regulatory T-cell population, Nat. Immunol., 11, 1093–1101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Jankovic, D., Kullberg, M. C., Feng, C. G., Goldszmid, R. S., Collazo, C. M., Wilson, M., Wynn, T. A., Kamanaka, M., Flavell, R. A., and Sher, A. (2007) Conventional T-bet+Foxp3–Th1-cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection, J. Exp. Med., 204, 273–283.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Nakagawa, T., Tsuruoka, M., Ogura, H., Okuyama, Y., Arima, Y., Hirano, T., and Murakami, M. (2010) IL-6 positively regulates Foxp3+CD8+ T-cells in vivo, Int. Immunol., 22, 129–139.

    Article  CAS  PubMed  Google Scholar 

  19. Rubtsov, Y. P., Niec, R. E., Josefowicz, S., Li, L., Darce, J., Mathis, D., Benoist, C., and Rudensky, A. Y. (2010) Stability of the regulatory T-cell lineage in vivo, Science, 329, 1667–1671.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Shevach, E. M. (2009) Mechanisms of Foxp3+ T-regulatory cell-mediated suppression, Immunity, 30, 636–645.

    Article  CAS  PubMed  Google Scholar 

  21. Gupta, N., Hegde, P., Lecerf, M., Nain, M., Kaur, M., Kalia, M., Vrati, S, Bayry, J., Lacroix-Desmazes, S., and Kaveri, S. V. (2014) Japanese encephalitis virus expands regulatory T-cells by increasing the expression of PD-L1 on dendritic cells, Eur. J. Immunol., 44, 1363–1374.

    Article  CAS  PubMed  Google Scholar 

  22. Chaturvedi, V., Collison, L. W., Guy, C. S., Workman, C. J., and Vignali, D. A. (2011) Cutting edge: human regulatory T-cells require IL-35 to mediate suppression and infectious tolerance, J. Immunol., 186, 6661–6666.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Vignali, D. A., Collison, L. W., and Workman, C. J. (2008) How regulatory T-cells work, Nature Rev. Immunol., 8, 523–532.

    Article  CAS  Google Scholar 

  24. Cao, X., Cai, S. F., Fehniger, T. A., Song, J., Collins, L. I., Piwnica, D. R., and Ley, T. J. (2007) Granzyme B and perforin are important for regulatory T-cell-mediated suppression of tumor clearance, Immunity, 27, 635–646.

    Article  CAS  PubMed  Google Scholar 

  25. Garin, M. I., Chu, C. C., Golshayan, D., Cernuda-Morollon, E., Wait, R., and Lechler, R. I. (2007) Galectin-1: a key effector of regulation mediated by CD4+CD25+ T-cells, Blood, 109, 2058–2065.

    Article  CAS  PubMed  Google Scholar 

  26. Deaglio, S., Dwyer, K. M., Gao, W., Friedman, D., Usheva, A., Erat, A., Chen, J. F., Enjyoji, K., Linden, J., Oukka, M., Kuchroo, V. K., Strom, T. B., and Robson, S. C. (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T-cells mediates immune suppression, J. Exp. Med., 204, 1257–1265.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Mandapathil, M., Hilldorfer, B., Szczepanski, M. J., Czystowska, M., Szajnik, M., Ren, J., Lang, S., Jackson, E. K., Gorelik, E., and Whiteside, T. L. (2010) Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T-cells, J. Biol. Chem., 285, 7176–7186.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lukashev, D., Ohta, A., Apasov, S., Chen, J. F., and Sitkovsky, M. (2004) Cutting edge: physiologic attenuation of proinflammatory transcription by the Gs protein-coupled A2A adenosine receptor in vivo, J. Immunol., 173, 21–24.

    Article  CAS  PubMed  Google Scholar 

  29. Thammavongsa, V., Kern, J. W., Missiakas, D. M., and Schneewind, O. (2009) Staphylococcus aureus synthesizes adenosine to escape host immune responses, J. Exp. Med., 206, 2417–2427.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Zarek, P. E., Huang, C. T., Lutz, E. R., Kowalski, J., Horton, M. R., Linden, J., Drake, C. G., and Powell, J. D. (2008) A2A receptor signaling promotes peripheral tolerance by inducing T-cell energy and the generation of adaptive regulatory T-cells, Blood, 111, 251–259.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Liang, B. T., Workman, C., Lee, J., Chew, C., Dale, B. M., Colonna, L., Flores, M., Li, N. Y., Schweighoffer, E., Greenberg, S., Tybulewicz, V., Vignali, D., and Clynes, R. (2008) Regulatory T-cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II, J. Immunol., 180, 5916–5926.

    Article  CAS  PubMed  Google Scholar 

  32. Sarris, M., Anderson, K. G., Randow, F., Mayr, L., and Betz, A. G. (2008) Neuropilin-1 expression on regulatory T-cells enhances their interactions with dendritic cells during antigen recognition, Immunity, 28, 402–413.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Zhang, M., Liu, M., Luther, J., and Kao, J. Y. (2010) Helicobacter pylori directs tolerogenic programming of dendritic cells, Gut Microbes, 1, 325–329.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Kao, J. Y., Zhang, M., Miller, M. J., Mills, J. C., Wang, B., Liu, M., Eaton, K. A., Zou, W., Berndt, B. E., Cole, T. S., Takeuchi, T., Owyang, S. Y., and Luther, J. (2010) Helicobacter pylori immune escape is mediated by dendritic cell-induced Treg-skewing and Th17 suppression in mice, Gastroenterology, 138, 1046–1054.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Balkow, S., Krux, F., Loser, K., Becker, J. U., Grabbe, S., and Dittmer, U. (2007) Friend retrovirus infection of myeloid dendritic cells impairs maturation, prolongs contact to naive T-cells, and favors expansion of regulatory T-cells, Blood, 110, 3949–3958.

    Article  CAS  PubMed  Google Scholar 

  36. McGuirk, P., McCann, C., and Mills, K. H. G. (2002) Pathogen-specific T-regulatory 1 cells induced in the respi-ratory tract by a bacterial molecule that stimulates inter-leukin 10 production by dendritic cells: a novel strategy for evasion of protective T-helper type 1 responses by Bordetella pertussis, J. Exp. Med., 195, 221–231.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Weber, M. S., Benkhoucha, M., Lehmann-Horn, K., Hertzenberg, D., Sellner, J., Santiago-Raber, M. L., Chofflon, M., Hemmer, B., Zamvil, S. S., and Lalive, P. H. (2010) Repetitive pertussis toxin promotes development of regulatory T-cells and prevents central nervous system autoimmune disease, PLoS One 5, e16009.

    Article  Google Scholar 

  38. Van der Kleij, D., Latz, E., Brouwers, J. F., Kruize, Y. C., Schmitz, M., Kurt-Jones, E. A., Espevik, T., de Jong, E. C., Kapsenberg, M. L., Golenbock, D. T., Tielens, A. G., and Yazdanbakhsh, M. (2002) A novel host–parasite lipid cross talk: schistosomal lysophosphatidylserine activates Toll-like receptor 2 and affects immune polarization, J. Biol. Chem., 277, 48122–48129.

    Article  PubMed  Google Scholar 

  39. Cue’llar, C., Wu, W., and Mendez, S. (2009) The hookworm tissue inhibitor of metalloproteases (Ac-TMP-1) modifies dendritic cell function and induces generation of CD4 and CD8 suppressor T-cells, PLoS Negl. Trop. Dis., 3, e439.

  40. Segura, M., Su, Z., Piccirillo, C., and Stevenson, M. M. (2007) Impairment of dendritic cell function by excretory-secretory products: a potential mechanism for nematode-induced immunosuppression, Eur. J. Immunol., 37, 1887–1904.

    Article  CAS  PubMed  Google Scholar 

  41. Smith, K. A., Hochweller, K., Hammerling, G. J., Boon, L., Macdonald, A. S., and Maizels, R. M. (2011) Chronic helminth infection promotes immune regulation in vivo through dominance of CD11cloCD103- dendritic cells, J. Immunol., 186, 7098–7109.

    Article  CAS  PubMed  Google Scholar 

  42. Chieppa, M., Bianchi, G., Doni, A., Del Prete, A., Sironi, M., Laskarin, G., Monti, P., Piemonti, L., Biondi, A., Mantovani, A., Introna, M., and Allavena, P. (2003) Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program, J. Immunol., 171, 4552–4560.

    Article  CAS  PubMed  Google Scholar 

  43. Josefowicz, S. Z., Ni, R. E., Kim, H. Y., Treuting, P., Chinen, T., Zheng, Y., Umetsu, D. T., and Rudensky, A. Y. (2012) Extrathymically generated regulatory T-cells control mucosal TH2 inflammation, Nature, 482, 395–399.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Tanoue, T., and Honda, K. (2012) Induction of Treg-cells in the mouse colonic mucosa: a central mechanism to maintain host-microbiota homeostasis, Sem. Immunol., 24, 50–57.

    Article  CAS  Google Scholar 

  45. Zaccone, P., Burton, O. T., Gibbs, S. E., Miller, N., Jones, F. M., Schramm, G., Haas, H., Doenhoff, M. J., Dunne, D. W., and Cooke, A. (2011) The S. mansoni glycoprotein ω-1 induces Foxp3 expression in NOD mouse CD4 T-cells, Eur. J. Immunol., 41, 2709–2718.

    Article  CAS  PubMed  Google Scholar 

  46. Liu, J. Y., Li, L. Y., Yang, X. Z., Li, J., Zhong, G., Wang, J., Li, L. J., Ji, B., Wu, Z. Q., Liu, H., Yang, X., and Liu, P. M. (2011) Adoptive transfer of DCs isolated from helminth-infected mice enhanced T-regulatory cell responses in airway allergic inflammation, Parasite Immunol., 33, 525–534.

    Article  CAS  PubMed  Google Scholar 

  47. Park, S. K., Cho, M. K., Park, H. K., Lee, K. H., Lee, S. J., Choi, S. H., Ock, M. S., Jeong, H. J., Lee, M. H., and Yu, H. S. (2009) Macrophage migration inhibitory factor homologs of anisakis simplex suppress Th2 response in allergic airway inflammation model via CD4+CD25+Foxp3+ T-cell recruitment, J. Immunol., 182, 6907–6914.

    Article  CAS  PubMed  Google Scholar 

  48. Sakaguchi, S., Wing, K., and Miara, M. (2013) in Clinical Immunology: Principles and Practice, Elsevier, pp. 193–202.

    Google Scholar 

  49. Sarangi, P. P., Sehrawat, S., Suvas, S., and Rouse, B. T. (2008) IL-10 and natural regulatory T-cells: two independent antiinflammatory mechanisms in herpes simplex virus-induced ocular immunopathology, J. Immunol., 180, 6297–6306.

    Article  CAS  PubMed  Google Scholar 

  50. Belkaid, Y., and Tarbell, K. (2009) Regulatory T-cells in the control of host-microorganism interactions, Ann. Rev. Immunol., 27, 551–589.

    Article  CAS  Google Scholar 

  51. Ordway, D., Henao-Tamayo, M., Harton, M., Palanisamy, G., Troudt, J., Shanley, C., Basaraba, R. J., and Orme, I. M. (2007) The hypervirulent Mycobacterium tuberculosis strain HN878 induces a potent TH1 response followed by rapid down-regulation, J. Immunol., 179, 522–531.

    Article  CAS  PubMed  Google Scholar 

  52. Mahnke, K., Knop, J., and Enk, A. H. (2003) Induction of tolerogenic DCs: “you are what you eat”, Trends Immunol., 24, 646–651.

    Article  CAS  PubMed  Google Scholar 

  53. De Paolo, R. W., Tang, F., Kim, I., Han, M., Levin, N., Ciletti, N., Lin, A., Anderson, D., Schneewind, O., and Jabri, B. (2008) Toll-like receptor 6 drives differentiation of tolerogenic dendritic cells and contributes to LcrV-mediated plague pathogenesis, Cell Host Microbe, 4, 350–361.

    Article  Google Scholar 

  54. Medzhitov, R. (2008) in Fundamental Immunology (Paul, W. E., ed.) Lippincott Williams and Wilkins, pp. 427–450.

  55. Mion, F., Tonon, S., Toffoletto, B., Cesselli, D., Pucillo, C. E., and Vitale, G. (2014) IL-10 production by B-cells is differentially regulated by immune-mediated and infectious stimuli and requires p38 activation, Mol. Immunol., 62, 266–276.

    Article  CAS  PubMed  Google Scholar 

  56. Carey, A. J., Tan, C. K., and Ulett, G. C. (2012) Infectioninduced IL-10 and JAK-STAT: a review of the molecular circuitry controlling immune hyperactivity in response to pathogenic microbes, JAKSTAT, 1, 159–167.

    PubMed Central  PubMed  Google Scholar 

  57. Ketlinskiy, S. A., and Simbirtsev, A. S. (2008) Cytokines [in Russian], Izdatel’stvo Foliant, St. Petersburg.

    Google Scholar 

  58. Brubaker, R. R. (2003) Interleukin-10 and inhibition of innate immunity to Yersiniae: roles of Yops and LcrV (V-antigen), Infect. Immun., 71, 3673–3681.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Kopp, E., and Medzhitov, R. (2002) A plague on host defense, J. Exp. Med., 21, 1009–1012.

    Article  Google Scholar 

  60. Stumhofer, J. S., Silver, J. S., Laurence, A., Porrett, P. M., Harris, T. H., Turka, L. A., Ernst, M., Saris, C. J., O’Shea, J. J., and Hunter, C. A. (2007) Interleukins 27 and 6 induce STAT3-mediated T-cell production of interleukin 10, Nat. Immunol., 8, 1363–1371.

    Article  CAS  PubMed  Google Scholar 

  61. Alcami, A., and Saraiva, M. (2009) Chemokine binding proteins encoded by pathogens, Adv. Exp. Med. Biol., 666, 167–179.

    Article  CAS  PubMed  Google Scholar 

  62. Taylor, A. L., and Llewelyn, M. J. (2010) Superantigen-induced proliferation of human CD4+CD25–T-cells is followed by a switch to a functional regulatory phenotype, J. Immunol., 185, 6591–6598.

    Article  CAS  PubMed  Google Scholar 

  63. Sutmuller, R. P. M., Morgan, M. E., Netea, M. G., Grauer, O., and Adema, G. J. (2006) Toll-like receptors on regulatory T-cells: expanding immune regulation, Trends Immunol., 27, 387–393.

    Article  CAS  PubMed  Google Scholar 

  64. Crellin, N. K., Garcia, R. V., Hadisfar, O., Allan, S. E., Steiner, T. S., and Levings, M. K. (2005) Human CD4+ T-cells express TLR5 and its ligand flagellin enhances the suppressive capacity and expression of FOXP3 in CD4+CD25+ T regulatory cells, J. Immunol., 175, 8051–8059.

    Article  CAS  PubMed  Google Scholar 

  65. Higgins, S. C., Lavelle, E. C., Mc Cann, C., Keogh, B., Mc Neela, E., Byrne, P., O’Gorman, B., Jarnicki, A., Mc Guirk, P., and Mills, K. H. (2003) Toll-like receptor 4-mediated innate IL-10 activates antigen-specific regulatory T-cells and confers resistance to Bordetella pertussis by inhibiting inflammatory pathology, J. Immunol., 171, 3119–3127.

    Article  CAS  PubMed  Google Scholar 

  66. Caramalho, I., Lopes-Carvalho, T., Ostler, D., Zelenay, S., Haury, M., and Demengeot, J. (2003) Regulatory T-cells selectively express toll-like receptors and are activated by lipopolysaccharide, J. Exp. Med., 197, 403–411.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Sing, A., Rost, D., Tvardovskaia, N., Roggenkamp, A., Wiedemann, A., Kirschning, C. J., Aepfelbacher, M., and Heesemann, J. (2002) Yersinia V-antigen exploits toll-like receptor 2 and CD14 for interleukin 10-mediated immunosuppression, J. Exp. Med., 196, 1017–1024.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Layland, L. E., Rad, R., Wagner, H., and da Costa, C. U. (2007) Immunopathology in schistosomiasis is controlled by antigen-specific regulatory T-cells primed in the presence of TLR2, Eur. J. Immunol., 37, 2174–2184.

    Article  CAS  PubMed  Google Scholar 

  69. Wang, X., Zhou, S., Chi, Y., Wen, X., Hoellwarth, J., He, L., Liu, F., Wu, C., Dhesi, S., Zhao, J., Hu, W., and Su, C. (2009) CD4+CD25+Treg induction by an HSP60-derived peptide SJMHE1 from Schistosoma japonicum is TLR2 dependent, Eur. J. Immunol., 39, 3052–3065.

    Article  CAS  PubMed  Google Scholar 

  70. Chen, Q., Davidson, T. S., Huter, E. N., and Shevach, E. M. (2009) Engagement of TLR2 does not reverse the suppressor function of mouse regulatory T-cells, but promotes their survival, J. Immunol., 183, 4458–4466.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Oberg, H. H., Ly, T. T., Ussat, S., Meyer, T., Kabelitz, D., and Wesch, D. (2010) Differential but direct abolishment of human regulatory T-cell suppressive capacity by various TLR2 ligands, J. Immunol., 184, 4733–4740.

    Article  CAS  PubMed  Google Scholar 

  72. Van Maren, W. W., Nierkens, S., Toonen, L. W., Bolscher, J. M., Sutmuller, R. P., and Adema, G. J. (2011) Multifaceted effects of synthetic TLR2 ligand and Legionella pneumophilia on Treg-mediated suppression of T-cell activation, BMC Immunol., DOI: 10.1186/1471-2172-12-23.

    Google Scholar 

  73. Zanin-Zhorov, A., Cahalon, L., Tal, G., Margalit, R., Lider, O., and Cohen, I. R. (2006) Heat shock protein 60 enhances CD4+CD25+ regulatory T-cell function via innate TLR2 signaling, J. Clin. Invest., 116, 2022–2032.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Peng, G., Guo, Z., Kiniwa, Y., Voo, K. S., Peng, W., Fu, T., Wang, D. Y., Li, Y., Wang, H. Y., and Wang, R. F. (2005) Toll-like receptor 8-mediated reversal of CD4+ regulatory T-cell function, Science, 309, 1380–1384.

    Article  CAS  PubMed  Google Scholar 

  75. Chiffoleau, E., Heslan, J. M., Heslan, M., Louvet, C., Condamine, T., and Cuturi, M. C. (2007) TLR9 ligand enhances proliferation of rat CD4+ T-cell and modulates suppressive activity mediated by CD4+CD25+ T-cell, Int. Immunol., 19, 193–201.

    Article  CAS  PubMed  Google Scholar 

  76. Carlin, A. F., Uchiyama, S., Chang, Y. C., Lewis, A. L., Nizet, V., and Varki, A. (2009) Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response, Blood, 113, 3333–3336.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Wang, M., Krauss, J. L., Domon, H., Hosur, K. B., Liang, S., Magotti, P., Triantafilou, M., Triantafilou, K., Lambris, J. D., and Hajishengallis, G. (2010) Microbial hijacking of complement-Toll-like receptor crosstalk, Sci. Signal., 3, DOI: 10.1126.

  78. Oliva, C., Turnbough, C. L., Jr., and Kearney, J. F. (2009) CD14–Mac-1 interactions in Bacillus anthracis spore internalization by macrophages, Proc. Natl. Acad. Sci. USA, 106, 13957–13962.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Hajishengallis, G., and Lambris, J. D. (2010) Crosstalk pathways between Toll-like receptors and the complement system, Trends Immunol., 31, 154–163.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Simmons, D. P., Canaday, D. H., Liu, Y., Li, Q., Huang, A., Boom, W. H., and Harding, C. V. (2010) Mycobacterium tuberculosis and TLR2 agonists inhibit induction of type I IFN and class I MHC antigen cross processing by TLR9, J. Immunol., 185, 2405–2415.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Melendez, A. J., Harnett, M. M., Pushparaj, P. N., Wong, W. S., Tay, H. K., Mc Sharry, C. P., and Harnett, W. (2007) Inhibition of FcεRI-mediated mast cell responses by ES-62, a product of parasitic filarial nematodes, Nat. Med., 13, 1375–1381.

    Article  CAS  PubMed  Google Scholar 

  82. Brodsky, I. E., and Medzhitov, R. (2009) Targeting of immune signaling networks by bacterial pathogens, Nat. Cell Biol., 11, 521–526.

    Article  CAS  PubMed  Google Scholar 

  83. Hajishengallis, G., and Lambris, J. D. (2011) Microbial manipulation of receptor crosstalk in innate immunity, Nat. Rev. Immunol., 11, 187–200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Ivashkiv, L. B. (2009) Cross-regulation of signaling by ITAM associated receptors, Nat. Immunol., 10, 340–347.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Zak, D. E., and Aderem, A. (2009) Systems biology of innate immunity, Immunol. Rev., 227, 264–282.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Gringhuis, S. I., den Dunnen, J., Litjens, M., van Het Hof, B., van Kooyk, Y., and Geijtenbeek, T. B. (2007) C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κB, Immunity, 26, 605–616.

    Article  CAS  PubMed  Google Scholar 

  87. Gringhuis, S. I., den Dunnen, J., Litjens, M., van der Vlist, M., and Geijtenbeek, T. B. (2009) Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori, Nat. Immunol., 10, 1081–1088.

    Article  CAS  PubMed  Google Scholar 

  88. Bergman, M. P., Engering, A., Smits, H. H., van Vliet, S. J., van Bodegraven, A. A., Wirth, H. P., Kapsenberg, M. L., Vandenbroucke-Grauls, C. M., van Kooyk, Y., and Appelmelk, B. J. (2004) Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN, J. Exp. Med., 200, 979–990.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Hovius, J. W., de Jong, M. A., den Dunnen, J., Litjens, M., Fikrig, E., van der Poll, T., Gringhuis, S. I., and Geijtenbeek, T. B. (2008) Salp15 binding to DC-SIGN inhibits cytokine expression by impairing both nucleosome remodeling and mRNA stabilization, PLoS Pathog., 4, e31.

    Article  Google Scholar 

  90. Hedrick, S. M. (2004) The acquired immune system: a vantage from beneath, Immunity, 21, 607–615.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Yu. Garib.

Additional information

Original Russian Text © F. Yu. Garib, A. P. Rizopulu, 2015, published in Biokhimiya, 2015, Vol. 80, No. 8, pp. 1141–1159.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garib, F.Y., Rizopulu, A.P. T-regulatory cells as part of strategy of immune evasion by pathogens. Biochemistry Moscow 80, 957–971 (2015). https://doi.org/10.1134/S0006297915080015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915080015

Key words

Navigation