Skip to main content
Log in

Use of intracellular transport processes for targeted drug delivery into a specified cellular compartment

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Targeted drug delivery into the cell compartment that is the most vulnerable to effects of the corresponding drug is a challenging problem, and its successful solution can significantly increase the efficiency and reduce side effects of the delivered therapeutic agents. To accomplish this one can utilize natural mechanisms of cellular specific uptake of macromolecules by receptor-mediated endocytosis and intracellular transport between cellular compartments. A transporting construction combining the components responsible for different steps of intracellular transport is promising for creating multifunctional modular constructions capable of delivering the necessary therapeutic agent into a given compartment of type-specified cells. This review focuses on intracellular transport peculiarities along with approaches for designing such transporting constructions for new, more effective, and safer strategies for treatment of various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CPP:

cell penetration peptides

HMP:

hemoglobin-like protein of E. coli

MNT:

modular nanotransporters

NES:

nuclear export signal

NLS:

nuclear localization signal

PAA:

polyamidoamine

PEI:

polyethyleneimine

PS:

photosensitizer

ROS:

reactive oxygen species

TAT:

trans-activator of transcription

References

  1. D’Souza, G. G., and Weissig, V. (2009) Subcellular targeting: a new frontier for drug-loaded pharmaceutical nanocarriers and the concept of the magic bullet, Expert. Opin. Drug Deliv., 6, 1135–1148.

    PubMed  Google Scholar 

  2. Rajendran, L., Knolker, H. J., and Simons, K. (2010) Subcellular targeting strategies for drug design and delivery, Nat. Rev. Drug Discov., 9, 29–42.

    PubMed  CAS  Google Scholar 

  3. Bareford, L. M., and Swaan, P. W. (2007) Endocytic mechanisms for targeted drug delivery, Adv. Drug Deliv. Rev., 59, 748–758.

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Sobolev, A. S. (2009) Novel modular transporters delivering anticancer drugs and foreign DNA to the nuclei of target cancer cells, J. BUON, 14,Suppl. 1, S33–S42.

    PubMed  PubMed Central  Google Scholar 

  5. Chen, J., Sawyer, N., and Regan, L. (2013) Protein-protein interactions: general trends in the relationship between binding affinity and interfacial buried surface area, Protein Sci., 22, 510–515.

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Lo Conte, L., Chothia, C., and Janin, J. (1999) The atomic structure of protein-protein recognition sites, J. Mol. Biol., 285, 2177–2198.

    PubMed  Google Scholar 

  7. Sobolev, A. S. (2013) Modular nanocarriers as a multipurposed platform for delivery of anticancer drugs, Vestn. Ros. Akad. Nauk, 83, 685–697.

    CAS  Google Scholar 

  8. Raper, S. E., Haskal, Z. J., Ye, X., Pugh, C., Furth, E. E., Gao, G. P., and Wilson, J. M. (1998) Selective gene transfer into the liver of non-human primates with E1-deleted, E2A-defective, or E1-E4 deleted recombinant adenoviruses, Hum. Gene Ther., 9, 671–679.

    PubMed  CAS  Google Scholar 

  9. Howe, S. J., Mansour, M. R., Schwarzwaelder, K., Bartholomae, C., Hubank, M., Kempski, H., Brugman, M. H., Pike-Overzet, K., Chatters, S. J., de Ridder, D., Gilmour, K. C., Adams, S., Thornhill, S. I., Parsley, K. L., Staal, F. J., Gale, R. E., Linch, D. C., Bayford, J., Brown, L., Quaye, M., Kinnon, C., Ancliff, P., Webb, D. K., Schmidt, M., von Kalle, C., Gaspar, H. B., and Thrasher, A. J. (2008) Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients, J. Clin. Invest., 118, 3143–3150.

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Manno, C. S., Pierce, G. F., Arruda, V. R., Glader, B., Ragni, M., Rasko, J. J., Ozelo, M. C., Hoots, K., Blatt, P., Konkle, B., Dake, M., Kaye, R., Razavi, M., Zajko, A., Zehnder, J., Rustagi, P. K., Nakai, H., Chew, A., Leonard, D., Wright, J. F., Lessard, R. R., Sommer, J. M., Tigges, M., Sabatino, D., Luk, A., Jiang, H., Mingozzi, F., Couto, L., Ertl, H. C., High, K. A., and Kay, M. A. (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response, Nat. Med., 12, 342–347.

    PubMed  CAS  Google Scholar 

  11. Ogris, M. (2006) Nucleic acid based therapeutics for tumor therapy, Anticancer Agents Med. Chem., 6, 563–570.

    PubMed  CAS  Google Scholar 

  12. Sobolev, A. S., Rosenkranz, A. A., and Gilyazova, D. G. (2004) Approaches for targeted intracellular delivery of photosensitizers for increasing their efficiency and lending cell specificity, Biofizika, 49, 351–379.

    PubMed  CAS  Google Scholar 

  13. Gilyazova, D. G., Rosenkranz, A. A., Gulak, P. V., Lunin, V. G., Sergienko, O. V., Khramtsov, Y. V., Timofeyev, K. N., Grin, M. A., Mironov, A. F., Rubin, A. B., Georgiev, G. P., and Sobolev, A. S. (2006) Targeting cancer cells by novel engineered modular transporters, Cancer Res., 66, 10534–10540.

    PubMed  CAS  Google Scholar 

  14. Roessler, K., and Eich, G. (1989) Nuclear recoils from 211-At decay, Radiochim. Acta, 47, 87–89.

    CAS  Google Scholar 

  15. Boswell, C. A., and Brechbiel, M. W. (2005) Auger electrons: lethal, low energy, and coming soon to a tumor cell nucleus near you, J. Nucl. Med., 46, 1946–1947.

    PubMed  Google Scholar 

  16. Buchegger, F., Perillo-Adamer, F., Dupertuis, Y. M., and Delaloye, A. B. (2006) Auger radiation targeted into DNA: a therapy perspective, Eur. J. Nucl. Med. Mol. Imaging, 33, 1352–1363.

    PubMed  Google Scholar 

  17. Hoyer, J., and Neundorf, I. (2012) Peptide vectors for the nonviral delivery of nucleic acids, Acc. Chem. Res., 45, 1048–1056.

    PubMed  CAS  Google Scholar 

  18. Alber, F., Dokudovskaya, S., Veenhoff, L. M., Zhang, W., Kipper, J., Devos, D., Suprapto, A., Karni-Schmidt, O., Williams, R., Chait, B. T., Sali, A., and Rout, M. P. (2007) The molecular architecture of the nuclear pore complex, Nature, 450, 695–701.

    PubMed  CAS  Google Scholar 

  19. Becker, T., Bottinger, L., and Pfanner, N. (2012) Mitochondrial protein import: from transport pathways to an integrated network, Trends Biochem. Sci., 37, 85–91.

    PubMed  CAS  Google Scholar 

  20. Allen, T. M., and Cullis, P. R. (2013) Liposomal drug delivery systems: from concept to clinical applications, Adv. Drug Deliv. Rev., 65, 36–48.

    PubMed  CAS  Google Scholar 

  21. Byrne, J. D., Betancourt, T., and Brannon-Peppas, L. (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics, Adv. Drug Deliv. Rev., 60, 1615–1626.

    PubMed  CAS  Google Scholar 

  22. Muro, S. (2012) Challenges in design and characterization of ligand-targeted drug delivery systems, J. Control Release, 164, 125–137.

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Tros de Ilarduya, C., and Duzgunes, N. (2013) Delivery of therapeutic nucleic acids via transferrin and transferrin receptors: lipoplexes and other carriers, Expert Opin. Drug Deliv., 10, 1583–1591.

    PubMed  CAS  Google Scholar 

  24. Golla, K., Bhaskar, C., Ahmed, F., and Kondapi, A. K. (2013) A target-specific oral formulation of doxorubicin-protein nanoparticles: efficacy and safety in hepatocellular cancer, J. Cancer, 4, 644–652.

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Hong, M., Zhu, S., Jiang, Y., Tang, G., Sun, C., Fang, C., Shi, B., and Pei, Y. (2010) Novel anti-tumor strategy: PEG-hydroxycamptothecin conjugate loaded transferrin-PEG-nanoparticles, J. Control Release, 141, 22–29.

    PubMed  CAS  Google Scholar 

  26. Suzuki, R., Takizawa, T., Kuwata, Y., Mutoh, M., Ishiguro, N., Utoguchi, N., Shinohara, A., Eriguchi, M., Yanagie, H., and Maruyama, K. (2008) Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome, Int. J. Pharm., 346, 143–150.

    PubMed  CAS  Google Scholar 

  27. Wang, Y., Zhou, J., Qiu, L., Wang, X., Chen, L., Liu, T., and Di, W. (2014) Cisplatin-alginate conjugate liposomes for targeted delivery to EGFR-positive ovarian cancer cells, Biomaterials, 35, 4297–4309.

    PubMed  CAS  Google Scholar 

  28. Razumienko, E., Dryden, L., Scollard, D., and Reilly, R. M. (2013) MicroSPECT/CT imaging of co-expressed HER2 and EGFR on subcutaneous human tumor xenografts in athymic mice using 111In-labeled bispecific radioimmunoconjugates, Breast Cancer Res. Treat., 138, 709–718.

    PubMed  CAS  Google Scholar 

  29. Slastnikova, T. A., Rosenkranz, A. A., Gulak, P. V., Schiffelers, R. M., Lupanova, T. N., Khramtsov, Y. V., Zalutsky, M. R., and Sobolev, A. S. (2012) Modular nanotransporters: a multipurpose in vivo working platform for targeted drug delivery, Int. J. Nanomed., 7, 467–482.

    CAS  Google Scholar 

  30. Slastnikova, T. A., Koumarianou, E., Rosenkranz, A. A., Vaidyanathan, G., Lupanova, T. N., Sobolev, A. S., and Zalutsky, M. R. (2012) Modular nanotransporters: a versatile approach for enhancing nuclear delivery and cytotoxicity of Auger electron-emitting 125I, EJNMMI Res., 2, 59.

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Rosenkranz, A. A., Vaidyanathan, G., Pozzi, O. R., Lunin, V. G., Zalutsky, M. R., and Sobolev, A. S. (2008) Engineered modular recombinant transporters: application of new platform for targeted radiotherapeutic agents to alpha-particle emitting 211At, Int. J. Radiat. Oncol. Biol. Phys., 72, 193–200.

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Watanabe, K., Kaneko, M., and Maitani, Y. (2012) Functional coating of liposomes using a folate-polymer conjugate to target folate receptors, Int. J. Nanomed., 7, 3679–3688.

    CAS  Google Scholar 

  33. Stevens, P. J., Sekido, M., and Lee, R. J. (2004) A folate receptor-targeted lipid nanoparticle formulation for a lipophilic paclitaxel prodrug, Pharm. Res., 21, 2153–2157.

    PubMed  CAS  Google Scholar 

  34. Naumann, R. W., Coleman, R. L., Burger, R. A., Sausville, E. A., Kutarska, E., Ghamande, S. A., Gabrail, N. Y., DePasquale, S. E., Nowara, E., and Gilbert, L. (2013) Precedent: a randomized phase II trial comparing vintafolide (EC145) and pegylated liposomal doxorubicin (PLD) in combination versus PLD alone in patients with platinum-resistant ovarian cancer, J. Clin. Oncol., 31, 4400–4406.

    PubMed  CAS  Google Scholar 

  35. Dong, D. W., Xiang, B., Gao, W., Yang, Z. Z., Li, J. Q., and Qi, X. R. (2013) pH-responsive complexes using prefunctionalized polymers for synchronous delivery of doxorubicin and siRNA to cancer cells, Biomaterials, 34, 4849–4859.

    PubMed  CAS  Google Scholar 

  36. Liu, D., Liu, F., Liu, Z., Wang, L., and Zhang, N. (2011) Tumor specific delivery and therapy by double-targeted nanostructured lipid carriers with anti-VEGFR-2 antibody, Mol. Pharmaceutics, 8, 2291–2301.

    CAS  Google Scholar 

  37. Rosenkranz, A. A., Lunin, V. G., Gulak, P. V., Sergienko, O. V., Shumiantseva, M. A., Voronina, O. L., Gilyazova, D. G., John, A. P., Kofner, A. A., Mironov, A. F., Jans, D. A., and Sobolev, A. S. (2003) Recombinant modular transporters for cell-specific nuclear delivery of locally acting drugs enhance photosensitizer activity, FASEB J., 17, 1121–1123.

    PubMed  CAS  Google Scholar 

  38. Durymanov, M. O., Beletkaia, E. A., Ulasov, A. V., Khramtsov, Y. V., Trusov, G. A., Rodichenko, N. S., Slastnikova, T. A., Vinogradova, T. V., Uspenskaya, N. Y., Kopantsev, E. P., Rosenkranz, A. A., Sverdlov, E. D., and Sobolev, A. S. (2012) Subcellular trafficking and transfection efficacy of polyethylenimine-polyethylene glycol polyplex nanoparticles with a ligand to melanocortin receptor-1, J. Control Release, 163, 211–219.

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Nayak, T. K., Atcher, R. W., Prossnitz, E. R., and Norenberg, J. P. (2008) Somatostatin-receptor-targeted alpha-emitting 213Bi is therapeutically more effective than beta(−)-emitting 177Lu in human pancreatic adenocarcinoma cells, Nuclear Med. Biol., 35, 673–678.

    CAS  Google Scholar 

  40. Shen, H., Hu, D., Du, J., Wang, X., Liu, Y., Wang, Y., Wei, J. M., Ma, D., Wang, P., and Li, L. (2008) Paclitaxel-octreotide conjugates in tumor growth inhibition of A549 human non-small cell lung cancer xenografted into nude mice, Eur. J. Pharmacol., 601, 23–29.

    PubMed  CAS  Google Scholar 

  41. Dai, W., Jin, W., Zhang, J., Wang, X., Wang, J., Zhang, X., Wan, Y., and Zhang, Q. (2012) Spatiotemporally controlled co-delivery of anti-vasculature agent and cytotoxic drug by octreotide-modified stealth liposomes, Pharmac. Res., 29, 2902–2911.

    CAS  Google Scholar 

  42. Su, Z., Shi, Y., Xiao, Y., Sun, M., Ping, Q., Zong, L., Li, S., Niu, J., Huang, A., and You, W. (2013) Effect of octreotide surface density on receptor-mediated endocytosis in vitro and anticancer efficacy of modified nanocarrier in vivo after optimization, Int. J. Pharmaceutics, 447, 281–292.

    CAS  Google Scholar 

  43. Iwase, Y., and Maitani, Y. (2012) Dual functional octreotide GAP modified liposomal irinotecan leads to high therapeutic efficacy for medullary thyroid carcinoma xenografts, Cancer Sci., 103, 310–316.

    PubMed  CAS  Google Scholar 

  44. Amin, M., Badiee, A., and Jaafari, M. R. (2013) Improvement of pharmacokinetic and antitumor activity of PEGylated liposomal doxorubicin by targeting with Nmethylated cyclic RGD peptide in mice bearing C-26 colon carcinomas, Int. J. Pharmaceutics, 458, 324–333.

    CAS  Google Scholar 

  45. Schiffelers, R. M., Ansari, A., Xu, J., Zhou, Q., Tang, Q., Storm, G., Molema, G., Lu, P. Y., Scaria, P. V., and Woodle, M. C. (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle, Nucleic Acids Res., 32, e149–e149.

    PubMed  PubMed Central  Google Scholar 

  46. Hemminki, A., Belousova, N., Zinn, K. R., Liu, B., Wang, M., Chaudhuri, T. R., Rogers, B. E., Buchsbaum, D. J., Siegal, G. P., and Barnes, M. N. (2001) An adenovirus with enhanced infectivity mediates molecular chemotherapy of ovarian cancer cells and allows imaging of gene expression, Mol. Ther., 4, 223–231.

    PubMed  CAS  Google Scholar 

  47. Biswas, S., and Torchilin, V. P. (2014) Nanopreparations for organelle-specific delivery in cancer, Adv. Drug Deliv. Rev., 66, 26–41.

    PubMed  CAS  Google Scholar 

  48. Torchilin, V. P. (2006) Recent approaches to intracellular delivery of drugs and DNA and organelle targeting, Annu. Rev. Biomed. Eng., 8, 343–375.

    PubMed  CAS  Google Scholar 

  49. Koshkaryev, A., Thekkedath, R., Pagano, C., Meerovich, I., and Torchilin, V. P. (2011) Targeting of lysosomes by liposomes modified with octadecyl-rhodamine B, J. Drug Target, 19, 606–614.

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Kurz, T., Terman, A., Gustafsson, B., and Brunk, U. T. (2008) Lysosomes and oxidative stress in aging and apoptosis, Biochim. Biophys. Acta, 1780, 1291–1303.

    PubMed  CAS  Google Scholar 

  51. Koshkaryev, A., Piroyan, A., and Torchilin, V. P. (2012) Increased apoptosis in cancer cells in vitro and in vivo by ceramides in transferrin-modified liposomes, Cancer Biol. Ther., 13, 50–60.

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Vaidyanathan, G., Affleck, D. J., Li, J., Welsh, P., and Zalutsky, M. R. (2001) A polar substituent-containing acylation agent for the radioiodination of internalizing monoclonal antibodies: N-succinimidyl 4-guanidinomethyl-3-[131I]iodobenzoate ([131I]SGMIB), Bioconj. Chem., 12, 428–438.

    CAS  Google Scholar 

  53. Olzmann, J. A., Kopito, R. R., and Christianson, J. C. (2013) The mammalian endoplasmic reticulum-associated degradation system, Cold Spring Harb. Perspect. Biol., 5, a013185.

    PubMed  Google Scholar 

  54. Mukhopadhyay, S., and Linstedt, A. D. (2013) Retrograde trafficking of AB(5) toxins: mechanisms to therapeutics, J. Mol. Med. (Berl.), 91, 1131–1141.

    CAS  Google Scholar 

  55. Wesche, J., Rapak, A., and Olsnes, S. (1999) Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol, J. Biol. Chem., 274, 34443–34449.

    PubMed  CAS  Google Scholar 

  56. Mukhopadhyay, S., and Linstedt, A. D. (2012) Manganese blocks intracellular trafficking of Shiga toxin and protects against Shiga toxicosis, Science, 335, 332–335.

    PubMed  CAS  Google Scholar 

  57. Johannes, L., and Romer, W. (2010) Shiga toxins — from cell biology to biomedical applications, Nat. Rev. Microbiol., 8, 105–116.

    PubMed  CAS  Google Scholar 

  58. El, A. A., Schmidt, F., Amessou, M., Sarr, M., Decaudin, D., Florent, J. C., and Johannes, L. (2007) Shiga toxinmediated retrograde delivery of a topoisomerase I inhibitor prodrug, Angew. Chem. Int. Ed. Engl., 46, 6469–6472.

    Google Scholar 

  59. El, A. A., Schmidt, F., Sarr, M., Decaudin, D., Florent, J. C., and Johannes, L. (2008) Synthesis and properties of a mitochondrial peripheral benzodiazepine receptor conjugate, Chem. Med. Chem., 3, 1687–1695.

    Google Scholar 

  60. Amessou, M., Carrez, D., Patin, D., Sarr, M., Grierson, D. S., Croisy, A., Tedesco, A. C., Maillard, P., and Johannes, L. (2008) Retrograde delivery of photosensitizer (TPPp-Obeta-GluOH)3 selectively potentiates its photodynamic activity, Bioconjug. Chem., 19, 532–538.

    PubMed  CAS  Google Scholar 

  61. Tarrago-Trani, M. T., Jiang, S., Harich, K. C., and Storrie, B. (2006) Shiga-like toxin subunit B (SLTB)-enhanced delivery of chlorin e 6 (Ce6) improves cell killing, Photochem. Photobiol., 82, 527–537.

    PubMed  CAS  Google Scholar 

  62. Vingert, B., Adotevi, O., Patin, D., Jung, S., Shrikant, P., Freyburger, L., Eppolito, C., Sapoznikov, A., Amessou, M., Quintin-Colonna, F., Fridman, W. H., Johannes, L., and Tartour, E. (2006) The Shiga toxin B-subunit targets antigen in vivo to dendritic cells and elicits anti-tumor immunity, Eur. J. Immunol., 36, 1124–1135.

    PubMed  CAS  Google Scholar 

  63. Adotevi, O., Vingert, B., Freyburger, L., Shrikant, P., Lone, Y. C., Quintin-Colonna, F., Haicheur, N., Amessou, M., Herbelin, A., Langlade-Demoyen, P., Fridman, W. H., Lemonnier, F., Johannes, L., and Tartour, E. (2007) B subunit of Shiga toxin-based vaccines synergize with alphagalactosylceramide to break tolerance against self antigen and elicit antiviral immunity, J. Immunol., 179, 3371–3379.

    PubMed  CAS  Google Scholar 

  64. Beatty, M. S., and Curiel, D. T. (2012) Chapter two — adenovirus strategies for tissue-specific targeting, Adv. Cancer Res., 115, 39–67.

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Boisvert, M., and Tijssen, P. (2012) Endocytosis of nonenveloped DNA viruses, in Molecular Regulation of Endocytosis, Chap. 17 (Ceresa, B., ed.) InTech; http://dx.doi.org/10.5772/45821.

    Google Scholar 

  66. Meier, O., and Greber, U. F. (2004) Adenovirus endocytosis, J. Gene Med., 6,Suppl. 1, S152–S163.

    PubMed  Google Scholar 

  67. FitzGerald, D. J., Padmanabhan, R., Pastan, I., and Willingham, M. C. (1983) Adenovirus-induced release of epidermal growth factor and pseudomonas toxin into the cytosol of KB cells during receptor-mediated endocytosis, Cell, 32, 607–617.

    PubMed  CAS  Google Scholar 

  68. Michael, S. I., and Curiel, D. T. (1994) Strategies to achieve targeted gene delivery via the receptor-mediated endocytosis pathway, Gene Ther., 1, 223–232.

    PubMed  CAS  Google Scholar 

  69. Ladokhin, A. S. (2013) pH-Triggered conformational switching along the membrane insertion pathway of the diphtheria toxin T-domain, Toxins (Basel), 5, 1362–1380.

    CAS  Google Scholar 

  70. Kurnikov, I. V., Kyrychenko, A., Flores-Canales, J. C., Rodnin, M. V., Simakov, N., Vargas-Uribe, M., Posokhov, Y. O., Kurnikova, M., and Ladokhin, A. S. (2013) pH-Triggered conformational switching of the diphtheria toxin T-domain: the roles of N-terminal histidines, J. Mol. Biol., 425, 2752–2764.

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Senzel, L., Gordon, M., Blaustein, R. O., Oh, K. J., Collier, R. J., and Finkelstein, A. (2000) Topography of diphtheria toxin’s T domain in the open channel state, J. Gen. Physiol., 115, 421–434.

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Huynh, P. D., Cui, C., Zhan, H., Oh, K. J., Collier, R. J., and Finkelstein, A. (1997) Probing the structure of the diphtheria toxin channel. Reactivity in planar lipid bilayer membranes of cysteine-substituted mutant channels with methanethiosulfonate derivatives, J. Gen. Physiol., 110, 229–242.

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Vargas-Uribe, M., Rodnin, M. V., Kienker, P., Finkelstein, A., and Ladokhin, A. S. (2013) Crucial role of H322 in folding of the diphtheria toxin T-domain into the openchannel state, Biochemistry, 52, 3457–3463.

    PubMed  CAS  Google Scholar 

  74. Murphy, J. R. (2011) Mechanism of diphtheria toxin catalytic domain delivery to the eukaryotic cell cytosol and the cellular factors that directly participate in the process, Toxins (Basel), 3, 294–308.

    CAS  Google Scholar 

  75. Sharpe, J. C., and London, E. (1999) Diphtheria toxin forms pores of different sizes depending on its concentration in membranes: probable relationship to oligomerization, J. Membr. Biol., 171, 209–221.

    PubMed  CAS  Google Scholar 

  76. Kent, M. S., Yim, H., Murton, J. K., Satija, S., Majewski, J., and Kuzmenko, I. (2008) Oligomerization of membrane-bound diphtheria toxin (CRM197) facilitates a transition to the open form and deep insertion, Biophys. J., 94, 2115–2127.

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Gilyazova, D. G., Rosenkranz, A. A., Gulak, P. V., Lunin, V. G., Sergienko, O. V., Khramtsov, Y. V., Timofeyev, K. N., Grin, M. A., Mironov, A. F., Rubin, A. B., Georgiev, G. P., and Sobolev, A. S. (2006) Targeting cancer cells by novel engineered modular transporters, Cancer Res., 66, 10534–10540.

    PubMed  CAS  Google Scholar 

  78. Khramtsov, Y. V., Rokitskaya, T. I., Rosenkranz, A. A., Trusov, G. A., Gnuchev, N. V., Antonenko, Y. N., and Sobolev, A. S. (2008) Modular drug transporters with diphtheria toxin translocation domain form edged holes in lipid membranes, J. Control Release, 128, 241–247.

    PubMed  CAS  Google Scholar 

  79. Rosenkranz, A. A., Khramtsov, Y. V., Trusov, G. A., Gnuchev, N. V., and Sobolev, A. S. (2008) Studies on the pore formation in lipid layers by modular transporters containing the translocational domain of the diphtheria toxin, Dokl. Ros. Akad. Nauk, 421, 385–387.

    Google Scholar 

  80. Sobolev, A. S. (2008) Modular transporters for subcellular cell-specific targeting of anti-tumor drugs, Bioessays, 30, 278–287.

    PubMed  CAS  Google Scholar 

  81. Erazo-Oliveras, A., Muthukrishnan, N., Baker, R., Wang, T. Y., and Pellois, J. P. (2012) Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges, Pharmaceuticals (Basel), 5, 1177–1209.

    CAS  Google Scholar 

  82. Green, M., and Loewenstein, P. M. (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein, Cell, 55, 1179–1188.

    PubMed  CAS  Google Scholar 

  83. Madani, F., Abdo, R., Lindberg, S., Hirose, H., Futaki, S., Langel, U., and Graslund, A. (2013) Modeling the endosomal escape of cell-penetrating peptides using a transmembrane pH gradient, Biochim. Biophys. Acta, 1828, 1198–1204.

    PubMed  CAS  Google Scholar 

  84. Cahill, K. (2009) Molecular electroporation and the transduction of oligoarginines, Phys. Biol., 7, 16001.

    PubMed  Google Scholar 

  85. Angeles-Boza, A. M., Erazo-Oliveras, A., Lee, Y. J., and Pellois, J. P. (2010) Generation of endosomolytic reagents by branching of cell-penetrating peptides: tools for the delivery of bioactive compounds to live cells in cis or trans, Bioconjug. Chem., 21, 2164–2167.

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Yessine, M. A., and Leroux, J. C. (2004) Membrane-destabilizing polyanions: interaction with lipid bilayers and endosomal escape of biomacromolecules, Adv. Drug Deliv. Rev., 56, 999–1021.

    PubMed  CAS  Google Scholar 

  87. Li, W., Nicol, F., and Szoka, F. C., Jr. (2004) GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery, Adv. Drug Deliv. Rev., 56, 967–985.

    PubMed  CAS  Google Scholar 

  88. Wharton, S. A., Martin, S. R., Ruigrok, R. W., Skehel, J. J., and Wiley, D. C. (1988) Membrane fusion by peptide analogues of influenza virus haemagglutinin, J. Gen. Virol., 69, 1847–1857.

    PubMed  CAS  Google Scholar 

  89. Michiue, H., Tomizawa, K., Wei, F. Y., Matsushita, M., Lu, Y. F., Ichikawa, T., Tamiya, T., Date, I., and Matsui, H. (2005) The NH2 terminus of influenza virus hemagglutinin-2 subunit peptides enhances the antitumor potency of polyarginine-mediated p53 protein transduction, J. Biol. Chem., 280, 8285–8289.

    PubMed  CAS  Google Scholar 

  90. Berg, K., Selbo, P. K., Prasmickaite, L., Tjelle, T. E., Sandvig, K., Moan, J., Gaudernack, G., Fodstad, O., Kjolsrud, S., Anholt, H., Rodal, G. H., Rodal, S. K., and Hogset, A. (1999) Photochemical internalization: a novel technology for delivery of macromolecules into cytosol, Cancer Res., 59, 1180–1183.

    PubMed  CAS  Google Scholar 

  91. Berg, K., Weyergang, A., Prasmickaite, L., Bonsted, A., Hogset, A., Strand, M. T., Wagner, E., and Selbo, P. K. (2010) Photochemical internalization (PCI): a technology for drug delivery, Methods Mol. Biol., 635, 133–145.

    PubMed  CAS  Google Scholar 

  92. Boussif, O., Lezoualch, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., and Behr, J. P. (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine, Proc. Natl. Acad. Sci. USA, 92, 7297–7301.

    PubMed  CAS  PubMed Central  Google Scholar 

  93. Sonawane, N. D., Szoka, F. C., Jr., and Verkman, A. S. (2003) Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes, J. Biol. Chem., 278, 44826–44831.

    PubMed  CAS  Google Scholar 

  94. Benjaminsen, R. V., Mattebjerg, M. A., Henriksen, J. R., Moghimi, S. M., and Andresen, T. L. (2013) The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH, Mol. Ther., 21, 149–157.

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Forrest, M. L., Meister, G. E., Koerber, J. T., and Pack, D. W. (2004) Partial acetylation of polyethylenimine enhances in vitro gene delivery, Pharm. Res., 21, 365–371.

    PubMed  CAS  Google Scholar 

  96. Funhoff, A. M., van Nostrum, C. F., Koning, G. A., Schuurmans-Nieuwenbroek, N. M., Crommelin, D. J., and Hennink, W. E. (2004) Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH, Biomacromolecules, 5, 32–39.

    PubMed  CAS  Google Scholar 

  97. Gabrielson, N. P., and Pack, D. W. (2006) Acetylation of polyethylenimine enhances gene delivery via weakened polymer/DNA interactions, Biomacromolecules, 7, 2427–2435.

    PubMed  CAS  Google Scholar 

  98. Richardson, S. C., Pattrick, N. G., Lavignac, N., Ferruti, P., and Duncan, R. (2010) Intracellular fate of bioresponsive poly(amidoamine)s in vitro and in vivo, J. Control Release, 142, 78–88.

    PubMed  CAS  Google Scholar 

  99. Zhang, Z. Y., and Smith, B. D. (2000) High-generation polycationic dendrimers are unusually effective at disrupting anionic vesicles: membrane bending model, Bioconjug. Chem., 11, 805–814.

    PubMed  CAS  Google Scholar 

  100. Klemm, A. R., Young, D., and Lloyd, J. B. (1998) Effects of polyethyleneimine on endocytosis and lysosome stability, Biochem. Pharmacol., 56, 41–46.

    PubMed  CAS  Google Scholar 

  101. Helmuth, J. A., Burckhardt, C. J., Greber, U. F., and Sbalzarini, I. F. (2009) Shape reconstruction of subcellular structures from live cell fluorescence microscopy images, J. Struct. Biol., 167, 1–10.

    PubMed  CAS  Google Scholar 

  102. Kakimoto, S., Hamada, T., Komatsu, Y., Takagi, M., Tanabe, T., Azuma, H., Shinkai, S., and Nagasaki, T. (2009) The conjugation of diphtheria toxin T domain to poly (ethylenimine) based vectors for enhanced endosomal escape during gene transfection, Biomaterials, 30, 402–408.

    PubMed  CAS  Google Scholar 

  103. Kakimoto, S., Tanabe, T., Azuma, H., and Nagasaki, T. (2010) Enhanced internalization and endosomal escape of dual-functionalized poly(ethyleneimine)s polyplex with diphtheria toxin T and R domains, Biomed. Pharmacother., 64, 296–301.

    PubMed  CAS  Google Scholar 

  104. Xu, Y., and Szoka, F. C., Jr. (1996) Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection, Biochemistry, 35, 5616–5623.

    PubMed  CAS  Google Scholar 

  105. Zuhorn, I. S., Bakowsky, U., Polushkin, E., Visser, W. H., Stuart, M. C., Engberts, J. B., and Hoekstra, D. (2005) Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency, Mol. Ther., 11, 801–810.

    PubMed  CAS  Google Scholar 

  106. Sobolev, A. S. (2009) Modular nanotransporters of anticancer drugs attaching them cellular specificity and increased efficiency, Usp. Biol. Khim., 49, 389–404.

    Google Scholar 

  107. Akhlynina, T. V., Jans, D. A., Rosenkranz, A. A., Statsyuk, N. V., Balashova, I. Y., Toth, G., Pavo, I., Rubin, A. B., and Sobolev, A. S. (1997) Nuclear targeting of chlorin e6 enhances its photosensitizing activity, J. Biol. Chem., 272, 20328–20331.

    PubMed  CAS  Google Scholar 

  108. Liang, H., Shin, D. S., Lee, Y. E., Nguyen, D. C., Kasravi, S., Aurasteh, P., and Berns, M. W. (2000) Subcellular phototoxicity of photofrin-II and lutetium texaphyrin in cells in vitro, Lasers Med. Sci., 15, 109–122.

    Google Scholar 

  109. Liang, H., Do, T., Kasravi, S., Aurasteh, P., Nguyen, A., Huang, A., Wang, Z., and Berns, M. W. (2000) Chromosomes are target sites for photodynamic therapy as demonstrated by subcellular laser microirradiation, J. Photochem. Photobiol. B, 54, 175–184.

    PubMed  CAS  Google Scholar 

  110. Ling, D., Bae, B. C., Park, W., and Na, K. (2012) Photodynamic efficacy of photosensitizers under an attenuated light dose via lipid nanocarrier-mediated nuclear targeting, Biomaterials, 33, 5478–5486.

    PubMed  CAS  Google Scholar 

  111. Vaidyanathan, G., and Zalutsky, M. R. (2011) Applications of 211At and 223Ra in targeted alpha-particle radiotherapy, Curr. Radiopharm., 4, 283–294.

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Jackson, M. R., Falzone, N., and Vallis, K. A. (2013) Advances in anticancer radiopharmaceuticals, Clin. Oncol. (R. Coll. Radiol.), 25, 604–609.

    CAS  Google Scholar 

  113. Sui, M., Liu, W., and Shen, Y. (2011) Nuclear drug delivery for cancer chemotherapy, J. Control Release, 155, 227–236.

    PubMed  CAS  Google Scholar 

  114. Jang, H., Ryoo, S. R., Kostarelos, K., Han, S. W., and Min, D. H. (2013) The effective nuclear delivery of doxorubicin from dextran-coated gold nanoparticles larger than nuclear pores, Biomaterials, 34, 3503–3510.

    PubMed  CAS  Google Scholar 

  115. Luby-Phelps, K. (2000) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area, Int. Rev. Cytol., 192, 189–221.

    PubMed  CAS  Google Scholar 

  116. Luby-Phelps, K. (2013) The physical chemistry of cytoplasm and its influence on cell function: an update, Mol. Biol. Cell, 24, 2593–2596.

    PubMed  CAS  PubMed Central  Google Scholar 

  117. Campbell, E. M., and Hope, T. J. (2003) Role of the cytoskeleton in nuclear import, Adv. Drug Deliv. Rev., 55, 761–771.

    PubMed  CAS  Google Scholar 

  118. Glover, D. J. (2012) Artificial viruses: exploiting viral trafficking for therapeutics, Infect. Disord. Drug Targets, 12, 68–80.

    PubMed  CAS  Google Scholar 

  119. Rogers, S. L., and Gelfand, V. I. (2000) Membrane trafficking, organelle transport, and the cytoskeleton, Curr. Opin. Cell Biol., 12, 57–62.

    PubMed  CAS  Google Scholar 

  120. Lakadamyali, M. (2014) Navigating the cell: how motors overcome roadblocks and traffic jams to efficiently transport cargo, Phys. Chem. Chem. Phys., 16, 5907–5916.

    PubMed  CAS  Google Scholar 

  121. Luscher, B., and Eisenman, R. N. (1992) Mitosis-specific phosphorylation of the nuclear oncoproteins Myc and Myb, J. Cell Biol., 118, 775–784.

    PubMed  CAS  Google Scholar 

  122. Dong, C., Li, Z., Alvarez, R., Jr., Feng, X. H., and Goldschmidt-Clermont, P. J. (2000) Microtubule binding to Smads may regulate TGF beta activity, Mol. Cell, 5, 27–34.

    PubMed  CAS  Google Scholar 

  123. Giannakakou, P., Sackett, D. L., Ward, Y., Webster, K. R., Blagosklonny, M. V., and Fojo, T. (2000) p53 is associated with cellular microtubules and is transported to the nucleus by dynein, Nat. Cell Biol., 2, 709–717.

    PubMed  CAS  Google Scholar 

  124. Lam, M. H., Thomas, R. J., Loveland, K. L., Schilders, S., Gu, M., Martin, T. J., Gillespie, M. T., and Jans, D. A. (2002) Nuclear transport of parathyroid hormone (PTH)-related protein is dependent on microtubules, Mol. Endocrinol., 16, 390–401.

    PubMed  CAS  Google Scholar 

  125. Lopez-Perez, M., and Salazar, E. P. (2006) A role for the cytoskeleton in STAT5 activation in MCF7 human breast cancer cells stimulated with EGF, Int. J. Biochem. Cell Biol., 38, 1716–1728.

    PubMed  CAS  Google Scholar 

  126. Roth, D. M., Moseley, G. W., Pouton, C. W., and Jans, D. A. (2011) Mechanism of microtubule-facilitated “fast track” nuclear import, J. Biol. Chem., 286, 14335–14351.

    PubMed  CAS  PubMed Central  Google Scholar 

  127. Roth, D. M., Moseley, G. W., Glover, D., Pouton, C. W., and Jans, D. A. (2007) A microtubule-facilitated nuclear import pathway for cancer regulatory proteins, Traffic, 8, 673–686.

    PubMed  CAS  Google Scholar 

  128. Favaro, M. T., de Toledo, M. A., Alves, R. F., Santos, C. A., Beloti, L. L., Janissen, R., de la Torre, L. G., Souza, A. P., and Azzoni, A. R. (2014) Development of a non-viral gene delivery vector based on the dynein light chain Rp3 and the TAT peptide, J. Biotechnol., 173, 10–18.

    PubMed  CAS  Google Scholar 

  129. Moseley, G. W., Leyton, D. L., Glover, D. J., Filmer, R. P., and Jans, D. A. (2010) Enhancement of protein transduction-mediated nuclear delivery by interaction with dynein/microtubules, J. Biotechnol., 145, 222–225.

    PubMed  CAS  Google Scholar 

  130. Stewart, M. (2007) Molecular mechanism of the nuclear protein import cycle, Nat. Rev. Mol. Cell Biol., 8, 195–208.

    PubMed  CAS  Google Scholar 

  131. Chook, Y. M., and Suel, K. E. (2011) Nuclear import by karyopherin-betas: recognition and inhibition, Biochim. Biophys. Acta, 1813, 1593–1606.

    PubMed  CAS  PubMed Central  Google Scholar 

  132. Xu, D., Farmer, A., and Chook, Y. M. (2010) Recognition of nuclear targeting signals by karyopherin-beta proteins, Curr. Opin. Struct. Biol., 20, 782–790.

    PubMed  CAS  PubMed Central  Google Scholar 

  133. Poon, I. K., Oro, C., Dias, M. M., Zhang, J. P., and Jans, D. A. (2005) A tumor cell-specific nuclear targeting signal within chicken anemia virus VP3/apoptin, J. Virol., 79, 1339–1341.

    PubMed  CAS  PubMed Central  Google Scholar 

  134. Marfori, M., Mynott, A., Ellis, J. J., Mehdi, A. M., Saunders, N. F., Curmi, P. M., Forwood, J. K., Boden, M., and Kobe, B. (2011) Molecular basis for specificity of nuclear import and prediction of nuclear localization, Biochim. Biophys. Acta, 1813, 1562–1577.

    PubMed  CAS  Google Scholar 

  135. Lin, J. R., and Hu, J. (2013) SeqNLS: nuclear localization signal prediction based on frequent pattern mining and linear motif scoring, PLoS One, 8, e76864.

    PubMed  CAS  PubMed Central  Google Scholar 

  136. Lott, K., and Cingolani, G. (2011) The importin beta binding domain as a master regulator of nucleocytoplasmic transport, Biochim. Biophys. Acta, 1813, 1578–1592.

    PubMed  CAS  PubMed Central  Google Scholar 

  137. Kosugi, S., Hasebe, M., Matsumura, N., Takashima, H., Miyamoto-Sato, E., Tomita, M., and Yanagawa, H. (2009) Six classes of nuclear localization signals specific to different binding grooves of importin alpha, J. Biol. Chem., 284, 478–485.

    PubMed  CAS  Google Scholar 

  138. Flores, K., and Seger, R. (2013) Stimulated nuclear import by beta-like importins, F1000Prime. Rep., 5, 41.

    PubMed  PubMed Central  Google Scholar 

  139. Kosugi, S., Hasebe, M., Tomita, M., and Yanagawa, H. (2009) Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs, Proc. Natl. Acad. Sci. USA, 106, 10171–10176.

    PubMed  CAS  PubMed Central  Google Scholar 

  140. Nguyen Ba, A. N., Pogoutse, A., Provart, N., and Moses, A. M. (2009) NLStradamus: a simple hidden Markov model for nuclear localization signal prediction, BMC Bioinformatics, 10, 202.

    PubMed  PubMed Central  Google Scholar 

  141. Kuusisto, H. V., Wagstaff, K. M., Alvisi, G., Roth, D. M., and Jans, D. A. (2012) Global enhancement of nuclear localization-dependent nuclear transport in transformed cells, FASEB J., 26, 1181–1193.

    PubMed  CAS  Google Scholar 

  142. Turner, J. G., Dawson, J., and Sullivan, D. M. (2012) Nuclear export of proteins and drug resistance in cancer, Biochem. Pharmacol., 83, 1021–1032.

    PubMed  CAS  Google Scholar 

  143. Fast, J., Mossberg, A. K., Nilsson, H., Svanborg, C., Akke, M., and Linse, S. (2005) Compact oleic acid in HAMLET, FEBS Lett., 579, 6095–6100.

    PubMed  CAS  Google Scholar 

  144. Gustafsson, L., Hallgren, O., Mossberg, A. K., Pettersson, J., Fischer, W., Aronsson, A., and Svanborg, C. (2005) HAMLET kills tumor cells by apoptosis: structure, cellular mechanisms, and therapy, J. Nutr., 135, 1299–1303.

    PubMed  CAS  Google Scholar 

  145. Hallgren, O., Aits, S., Brest, P., Gustafsson, L., Mossberg, A. K., Wullt, B., and Svanborg, C. (2008) Apoptosis and tumor cell death in response to HAMLET (human alphalactalbumin made lethal to tumor cells), Adv. Exp. Med. Biol., 606, 217–240.

    PubMed  CAS  Google Scholar 

  146. Maddika, S., Mendoza, F. J., Hauff, K., Zamzow, C. R., Paranjothy, T., and Los, M. (2006) Cancer-selective therapy of the future: apoptin and its mechanism of action, Cancer Biol. Ther., 5, 10–19.

    PubMed  CAS  Google Scholar 

  147. Kuusisto, H. V., Wagstaff, K. M., Alvisi, G., and Jans, D. A. (2008) The C-terminus of apoptin represents a unique tumor cell-enhanced nuclear targeting module, Int. J. Cancer, 123, 2965–2969.

    PubMed  CAS  Google Scholar 

  148. Los, M., Panigrahi, S., Rashedi, I., Mandal, S., Stetefeld, J., Essmann, F., and Schulze-Osthoff, K. (2009) Apoptin, a tumor-selective killer, Biochim. Biophys. Acta, 1793, 1335–1342.

    PubMed  CAS  Google Scholar 

  149. Ho, C. S. J., Rydstrom, A., Trulsson, M., Balfors, J., Storm, P., Puthia, M., Nadeem, A., and Svanborg, C. (2012) HAMLET: functional properties and therapeutic potential, Future Oncol., 8, 1301–1313.

    CAS  Google Scholar 

  150. Backendorf, C., Visser, A. E., de Boer, A. G., Zimmerman, R., Visser, M., Voskamp, P., Zhang, Y. H., and Noteborn, M. (2008) Apoptin: therapeutic potential of an early sensor of carcinogenic transformation, Annu. Rev. Pharmacol. Toxicol., 48, 143–169.

    PubMed  CAS  Google Scholar 

  151. Heilman, D. W., Teodoro, J. G., and Green, M. R. (2006) Apoptin nucleocytoplasmic shuttling is required for cell type-specific localization, apoptosis, and recruitment of the anaphase-promoting complex/cyclosome to PML bodies, J. Virol., 80, 7535–7545.

    PubMed  CAS  PubMed Central  Google Scholar 

  152. Kucharski, T. J., Gamache, I., Gjoerup, O., and Teodoro, J. G. (2011) DNA damage response signaling triggers nuclear localization of the chicken anemia virus protein Apoptin, J. Virol., 85, 12638–12649.

    PubMed  CAS  PubMed Central  Google Scholar 

  153. Lee, Y. H., Cheng, C. M., Chang, Y. F., Wang, T. Y., and Yuo, C. Y. (2007) Apoptin T108 phosphorylation is not required for its tumor-specific nuclear localization but partially affects its apoptotic activity, Biochem. Biophys. Res. Commun., 354, 391–395.

    PubMed  CAS  Google Scholar 

  154. Yu, J., Xie, X., Zheng, M., Yu, L., Zhang, L., Zhao, J., Jiang, D., and Che, X. (2012) Fabrication and characterization of nuclear localization signal-conjugated glycol chitosan micelles for improving the nuclear delivery of doxorubicin, Int. J. Nanomed., 7, 5079–5090.

    CAS  Google Scholar 

  155. Subramanian, A., Ranganathan, P., and Diamond, S. L. (1999) Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells, Nat. Biotechnol., 17, 873–877.

    PubMed  CAS  Google Scholar 

  156. Chan, C., Cai, Z., Su, R., and Reilly, R. M. (2010) 111In-or 99mTc-labeled recombinant VEGF bioconjugates: in vitro evaluation of their cytotoxicity on porcine aortic endothelial cells overexpressing Flt-1 receptors, Nucl. Med. Biol., 37, 105–115.

    PubMed  CAS  Google Scholar 

  157. Bisland, S. K., Singh, D., and Gariepy, J. (1999) Potentiation of chlorin e6 photodynamic activity in vitro with peptide-based intracellular vehicles, Bioconjug. Chem., 10, 982–992.

    PubMed  CAS  Google Scholar 

  158. Chan, C. K., Hubner, S., Hu, W., and Jans, D. A. (1998) Mutual exclusivity of DNA binding and nuclear localization signal recognition by the yeast transcription factor GAL4: implications for nonviral DNA delivery, Gene Ther., 5, 1204–1212.

    PubMed  CAS  Google Scholar 

  159. Kim, B. K., Kang, H., Doh, K. O., Lee, S. H., Park, J. W., Lee, S. J., and Lee, T. J. (2012) Homodimeric SV40 NLS peptide formed by disulfide bond as enhancer for gene delivery, Bioorg. Med. Chem. Lett., 22, 5415–5418.

    PubMed  CAS  Google Scholar 

  160. Koumarianou, E., Slastnikova, T. A., Pruszynski, M., Rosenkranz, A. A., Vaidyanathan, G., Sobolev, A. S., and Zalutsky, M. R. (2014) Radiolabeling and in vitro evaluation of Ga-NOTA-modular nanotransporter — a potential Auger electron emitting EGFR-targeted radiotherapeutic, Nucl. Med. Biol., 41, 441–449.

    PubMed  CAS  Google Scholar 

  161. Chen, P., Wang, J., Hope, K., Jin, L., Dick, J., Cameron, R., Brandwein, J., Minden, M., and Reilly, R. M. (2006) Nuclear localizing sequences promote nuclear translocation and enhance the radiotoxicity of the anti-CD33 monoclonal antibody HuM195 labeled with 111In in human myeloid leukemia cells, J. Nucl. Med., 47, 827–836.

    PubMed  CAS  Google Scholar 

  162. Cornelissen, B., and Vallis, K. A. (2010) Targeting the nucleus: an overview of Auger-electron radionuclide therapy, Curr. Drug Discov. Technol., 7, 263–279.

    PubMed  CAS  Google Scholar 

  163. Yousif, L. F., Stewart, K. M., and Kelley, S. O. (2009) Targeting mitochondria with organelle-specific compounds: strategies and applications, Chembiochem., 10, 1939–1950.

    PubMed  CAS  Google Scholar 

  164. Yousif, L. F., Stewart, K. M., Horton, K. L., and Kelley, S. O. (2009) Mitochondria-penetrating peptides: sequence effects and model cargo transport, Chembiochem., 10, 2081–2088.

    PubMed  CAS  Google Scholar 

  165. Frantz, M. C., and Wipf, P. (2010) Mitochondria as a target in treatment, Environ. Mol. Mutagen., 51, 462–475.

    PubMed  CAS  PubMed Central  Google Scholar 

  166. Michaud, M., Ubrig, E., Filleur, S., Erhardt, M., Ephritikhine, G., Marechal-Drouard, L., and Duchene, A. M. (2014) Differential targeting of VDAC3 mRNA isoforms influences mitochondria morphology, Proc. Natl. Acad. Sci. USA, 111, 8991–8996.

    PubMed  CAS  Google Scholar 

  167. Wang, G., Shimada, E., Koehler, C. M., and Teitell, M. A. (2012) PNPase and RNA trafficking into mitochondria, Biochim. Biophys. Acta, 1819, 998–1007.

    PubMed  CAS  PubMed Central  Google Scholar 

  168. Sakhrani, N. M., and Padh, H. (2013) Organelle targeting: third level of drug targeting, Drug Design Devel. Therap., 7, 585–599.

    CAS  Google Scholar 

  169. Gary-Bobo, M., Nirde, P., Jeanjean, A., Morere, A., and Garcia, M. (2007) Mannose 6-phosphate receptor targeting and its applications in human diseases, Curr. Med. Chem., 14, 2945–2953.

    PubMed  CAS  PubMed Central  Google Scholar 

  170. Mossalam, M., Dixon, A. S., and Lim, C. S. (2010) Controlling subcellular delivery to optimize therapeutic effect, Ther. Deliv., 1, 169–193.

    PubMed  CAS  PubMed Central  Google Scholar 

  171. Durymanov, M. O., Slastnikova, T. A., Kuzmich, A. I., Khramtsov, Y. V., Ulasov, A. V., Rosenkranz, A. A., Egorov, S. Y., Sverdlov, E. D., and Sobolev, A. S. (2013) Microdistribution of MC1R-targeted polyplexes in murine melanoma tumor tissue, Biomaterials, 34, 10209–10216.

    PubMed  CAS  Google Scholar 

  172. Misra, R., and Sahoo, S. K. (2010) Intracellular trafficking of nuclear localization signal conjugated nanoparticles for cancer therapy, Eur. J. Pharm. Sci., 39, 152–163.

    PubMed  CAS  Google Scholar 

  173. Ke, M. R., Yeung, S. L., Fong, W. P., Ng, D. K., and Lo, P. C. (2012) A phthalocyanine-peptide conjugate with high in vitro photodynamic activity and enhanced in vivo tumor-retention property, Chemistry, 18, 4225–4233.

    PubMed  CAS  Google Scholar 

  174. Verwilst, P., David, C. C., Leen, V., Hofkens, J., de Witte, P. A., and de Borggraeve, W. M. (2013) Synthesis and in vitro evaluation of a PDT active BODIPY-NLS conjugate, Bioorg. Med. Chem. Lett., 23, 3204–3207.

    PubMed  CAS  Google Scholar 

  175. Costantini, D. L., McLarty, K., Lee, H., Done, S. J., Vallis, K. A., and Reilly, R. M. (2010) Antitumor effects and normal-tissue toxicity of 111In-nuclear localization sequence-trastuzumab in athymic mice bearing HER-positive human breast cancer xenografts, J. Nucl. Med., 51, 1084–1091.

    PubMed  CAS  Google Scholar 

  176. Cornelissen, B., Waller, A., Target, C., Kersemans, V., Smart, S., and Vallis, K. A. (2012) 111In-BnDTPA-F3: an Auger electron-emitting radiotherapeutic agent that targets nucleolin, EJNMMI Res., 2, 9.

    PubMed  PubMed Central  Google Scholar 

  177. Gedda, L., Fondell, A., Lundqvist, H., Park, J. W., and Edwards, K. (2012) Experimental radionuclide therapy of HER2-expressing xenografts using two-step targeting nuclisome particles, J. Nucl. Med., 53, 480–487.

    PubMed  CAS  Google Scholar 

  178. Labhasetwar, V. (2005) Nanotechnology for drug and gene therapy: the importance of understanding molecular mechanisms of delivery, Curr. Opin. Biotechnol., 16, 674–680.

    PubMed  CAS  Google Scholar 

  179. Sui, M., Liu, W., and Shen, Y. (2011) Nuclear drug delivery for cancer chemotherapy, J. Control Release, 155, 227–236.

    PubMed  CAS  Google Scholar 

  180. Opanasopit, P., Nishikawa, M., and Hashida, M. (2002) Factors affecting drug and gene delivery: effects of interaction with blood components, Crit. Rev. Ther. Drug Carrier Syst., 19, 191–233.

    PubMed  CAS  Google Scholar 

  181. Jain, R. K. (1994) Barriers to drug delivery in solid tumors, Sci. Am., 271, 58–65.

    PubMed  CAS  Google Scholar 

  182. Jain, R. K. (1999) Understanding barriers to drug delivery: high resolution in vivo imaging is key, Clin. Cancer Res., 5, 1605–1606.

    PubMed  CAS  Google Scholar 

  183. Li, Y., Wang, J., Zhu, X., Feng, Q., Li, X., and Feng, X. (2012) Urinary protein markers predict the severity of renal histological lesions in children with mesangial proliferative glomerulonephritis, BMC Nephrol., 13, 29.

    PubMed  CAS  PubMed Central  Google Scholar 

  184. Minchinton, A. I., and Tannock, I. F. (2006) Drug penetration in solid tumours, Nat. Rev. Cancer, 6, 583–592.

    PubMed  CAS  Google Scholar 

  185. Blackwell, K. L., Burstein, H. J., Storniolo, A. M., Rugo, H. S., Sledge, G., Aktan, G., Ellis, C., Florance, A., Vukelja, S., Bischoff, J., Baselga, J., and O’Shaughnessy, J. (2012) Overall survival benefit with lapatinib in combination with trastuzumab for patients with human epidermal growth factor receptor 2-positive metastatic breast cancer: final results from the EGF104900 study, J. Clin. Oncol., 30, 2585–2592.

    PubMed  CAS  Google Scholar 

  186. LoRusso, P. M., Canetta, R., Wagner, J. A., Balogh, E. P., Nass, S. J., Boerner, S. A., and Hohneker, J. (2012) Accelerating cancer therapy development: the importance of combination strategies and collaboration. Summary of an Institute of Medicine workshop, Clin. Cancer Res., 18, 6101–6109.

    PubMed  Google Scholar 

  187. Bozic, I., Reiter, J. G., Allen, B., Antal, T., Chatterjee, K., Shah, P., Moon, Y. S., Yaqubie, A., Kelly, N., Le, D. T., Lipson, E. J., Chapman, P. B., Diaz, L. A., Jr., Vogelstein, B., and Nowak, M. A. (2013) Evolutionary dynamics of cancer in response to targeted combination therapy, Elife, 2, e00747.

    PubMed  PubMed Central  Google Scholar 

  188. Ziemienowicz, A., Gorlich, D., Lanka, E., Hohn, B., and Rossi, L. (1999) Import of DNA into mammalian nuclei by proteins originating from a plant pathogenic bacterium, Proc. Natl. Acad. Sci. USA, 96, 3729–3733.

    PubMed  CAS  PubMed Central  Google Scholar 

  189. Rudolph, C., Plank, C., Lausier, J., Schillinger, U., Muller, R. H., and Rosenecker, J. (2003) Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells, J. Biol. Chem., 278, 11411–11418.

    PubMed  CAS  Google Scholar 

  190. Cornelissen, B., Hu, M., McLarty, K., Costantini, D., and Reilly, R. M. (2007) Cellular penetration and nuclear importation properties of 111In-labeled and 123I-labeled HIV-1 TAT-peptide immunoconjugates in BT-474 human breast cancer cells, Nucl. Med. Biol., 34, 37–46.

    PubMed  CAS  Google Scholar 

  191. Cornelissen, B., Darbar, S., Kersemans, V., Allen, D., Falzone, N., Barbeau, J., Smart, S., and Vallis, K. A. (2012) Amplification of DNA damage by a gamma-H2AX-targeted radiopharmaceutical, Nucl. Med. Biol., 39, 1142–1151.

    PubMed  CAS  Google Scholar 

  192. Masuda, T., Akita, H., and Harashima, H. (2005) Evaluation of nuclear transfer and transcription of plasmid DNA condensed with protamine by microinjection: the use of a nuclear transfer score, FEBS Lett., 579, 2143–2148.

    PubMed  CAS  Google Scholar 

  193. Cornelissen, B., Waller, A., Able, S., and Vallis, K. A. (2013) Molecular radiotherapy using cleavable radioimmunoconjugates that target EGFR and gamma-H2AX, Mol. Cancer Ther., 12, 2472–2482.

    PubMed  CAS  Google Scholar 

  194. Slastnikova, T. A., Rosenkranz, A. A., Lupanova, T. N., Gulak, P. V., Gnuchev, N. V., and Sobolev, A. S. (2012) Study of efficiency of the modular nanotransporter for targeted delivery of photosensitizers to melanoma cell nuclei in vivo, Dokl. Biochem. Biophys., 446, 235–237.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Sobolev.

Additional information

Original Russian Text © A. A. Rosenkranz, A. V. Ulasov, T. A. Slastnikova, Y. V. Khramtsov, A. S. Sobolev, 2014, published in Biokhimiya, 2014, Vol. 79, No. 9, pp. 1148–1168.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenkranz, A.A., Ulasov, A.V., Slastnikova, T.A. et al. Use of intracellular transport processes for targeted drug delivery into a specified cellular compartment. Biochemistry Moscow 79, 928–946 (2014). https://doi.org/10.1134/S0006297914090090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914090090

Key words

Navigation