Skip to main content
Log in

Hemostatic interference of Indian king cobra (Ophiophagus hannah) venom. Comparison with three other snake venoms of the subcontinent

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Unlike Naja naja, Bungarus caeruleus, Echis carinatus, and Daboia/Vipera russellii venoms, Ophiophagus hannah venom is medically ignored in the Indian subcontinent. Being the biggest poisonous snake, O. hannah has been presumed to inject several lethal doses of venom in a single bite. Lack of therapeutic antivenom to O. hannah bite in India makes any attempt to save the victim a difficult exercise. This study was initiated to compare O. hannah venom with the above said venoms for possible interference in hemostasis. Ophiophagus hannah venom was found to actively interfere in hemostatic stages such as fibrin clot formation, platelet activation/aggregation, and fibrin clot dissolution. It decreased partial thromboplastin time (aPTT), prothrombin time (PT), and thrombin clotting time (TCT). These activities are similar to that shown by E. carinatus and D. russellii venoms, and thus O. hannah venom was found to exert procoagulant activity through the common pathway of blood coagulation, while N. naja venom increased aPTT and TCT but not PT, and hence it was found to exert anticoagulant activity through the intrinsic pathway. Venoms of O. hannah, E. carinatus, and D. russellii lack plasminogen activation property as they do not hydrolyze azocasein, while they all show plasmin-like activity by degrading the fibrin clot. Although N. naja venom did not degrade azocasein, unlike other venoms, it showed feeble plasmin-like activity on fibrin clot. Venom of E. carinatus induced clotting of human platelet rich plasma (PRP), while the other three venoms interfered in agonist-induced platelet aggregation in PRP. Venom of O. hannah least inhibited the ADP induced platelet aggregation as compared to D. russellii and N. naja venoms. All these three venoms showed complete inhibition of epinephrine-induced aggregation at varied doses. However, O. hannah venom was unique in inhibiting thrombin induced aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

aPTT:

activated partial thromboplastin time

PRP:

platelet rich plasma

PT:

prothrombin time

TCT:

thrombin clotting time

References

  1. Chippaux, J. P. (1998) Bull WHO, 76, 515–524.

    PubMed  CAS  Google Scholar 

  2. Brunda, G., and Sashidhar, R. B. (2007) Ind. J. Med. Res., 125, 661–668.

    Google Scholar 

  3. Lu, Q., Clemetson, J. M., and Clemetson, K. J. (2005) J. Thromb. Haemost., 3, 1791–1799.

    Article  PubMed  CAS  Google Scholar 

  4. Kamiguti, A. S., Zuzel, M., and Theakston, R. D. G. (1998) Braz. J. Med. Biol. Res., 31, 853–862.

    Article  PubMed  CAS  Google Scholar 

  5. Jagadeesha, D. K., Shashidhara Murthy, R., Girish, K. S., and Kemparaju, K. (2002) Toxicon, 40, 667–675.

    Article  PubMed  CAS  Google Scholar 

  6. Raghavendra Gowda, C. D., Nataraju, A., Rajesh, R., Dhananjaya, B. L., Sharath, B. K., and Vishwanath, B. S. (2006) Comp. Biochem. Physiol., 143, 295–302.

    Google Scholar 

  7. Mahadeswaraswamy, Y. H., Devaraja, S., Kumar, M. S., Gowtham, Y. N. J., and Kemparaju, K. (2009) Ind. J. Biochem. Biophys., 46, 154–160.

    CAS  Google Scholar 

  8. Kumar, M. S., Devaraj, V. R., Vishwanath, B. S., and Kemparaju, K. (2009) J. Thromb. Thrombolysis, 29, 340–348.

    Article  Google Scholar 

  9. Jayanthi, G. P., and Gowda, T. V. (1990) Toxicon, 28, 65–74.

    Article  PubMed  CAS  Google Scholar 

  10. Prasad, B. N., Kemparaju, K., Bhatt, K. G., and Gowda, T. V. (1996) Toxicon, 34, 1173–1185.

    Article  PubMed  CAS  Google Scholar 

  11. Kemparaju, K., Krishnakanth, T. P., and Veerabasappa Gowda, T. (1999) Toxicon, 37, 1659–1671.

    Article  PubMed  CAS  Google Scholar 

  12. Rudrammaji, L. M., Machiah, K. D., Kantha, T. P., and Gowda, T. V. (2001) Mol. Cell. Biochem., 219, 39–44.

    Article  PubMed  CAS  Google Scholar 

  13. Satish, S., Tejaswini, J., Krishnakantha, T. P., and Gowda, T. V. (2004) Biochimie, 86, 203–210.

    Article  PubMed  CAS  Google Scholar 

  14. Gomes, A., and Pallabi, De. (1999) Biochem. Biophys. Res. Commun., 266, 488–491.

    Article  PubMed  CAS  Google Scholar 

  15. Laemmli, U. K. (1970) Nature, 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  16. Quick, A. J. (1935) J. Biol. Chem., 109, LXXiii–LXXiV.

    Google Scholar 

  17. Evans, H. J. (1981) Biochim. Biophys. Acta, 660, 219–226.

    PubMed  CAS  Google Scholar 

  18. Gao, R., Zhang, Y., Meng, Q. X., Lee, W. H., Li, D. S., Xiong, Y. L., and Wang, W. Y. (1998) Toxicon, 36, 457–467.

    Article  PubMed  CAS  Google Scholar 

  19. Denis, C., Methia, N., and Frenette, P. S. (1998) Proc. Natl. Acad. Sci. USA, 95, 9524–9529.

    Article  PubMed  CAS  Google Scholar 

  20. Loria, G. D., Rucavado, A., and Kamiguti, A. S. (2003) Arch. Biochem. Biophys., 418, 13–24.

    Article  PubMed  CAS  Google Scholar 

  21. Gene, J. A., Roy, A., and Rojas, G. (1989) Toxicon, 27, 841–848.

    Article  PubMed  CAS  Google Scholar 

  22. Rajesh, R., Raghavendra Gowda, C. D., and Nataraju, A. (2005) Toxicon, 46, 84–92.

    Article  PubMed  CAS  Google Scholar 

  23. Chakrabarty, D., Datta, K., Gomes, A., and Bhattacharyya, D. (2000) Toxicon, 38, 1475–1490.

    Article  PubMed  CAS  Google Scholar 

  24. Born, G. V., and Cross, M. J. (1963) Nature, 197, 974–976.

    Article  PubMed  CAS  Google Scholar 

  25. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem., 193, 265–275.

    PubMed  CAS  Google Scholar 

  26. Mahadeswaraswamy, Y. H., Nagaraju, S., Girish, K. S., and Kemparaju, K. (2008) Phytother. Res., 22, 963–969.

    Article  PubMed  CAS  Google Scholar 

  27. Yamada, D., and Morita, T. (1999) Thromb. Res., 94, 221–226.

    Article  PubMed  CAS  Google Scholar 

  28. Gowda, D. C., Jackson, C. M., Hensley, P., and Davidson, E. A. (1994) J. Biol. Chem., 269, 10644–10650.

    PubMed  CAS  Google Scholar 

  29. Nakayama, D., Ben Ammar, Y., and Takeda, S. (2009) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 65, 1306–1308.

    Article  PubMed  Google Scholar 

  30. Lee, W. H., Zhang, Y., Wang, W. Y., Xiong, Y. L., and Gao, R. (1995) Toxicon, 33, 1263–1276.

    Article  PubMed  CAS  Google Scholar 

  31. Kornalik, F., and Blomback, B. (1975) Thromb. Res., 6, 57–63.

    Article  PubMed  CAS  Google Scholar 

  32. Mukherjee, A. K. (2008) Toxicon, 51, 923–933.

    Article  PubMed  CAS  Google Scholar 

  33. Kumar, M. S., Girish, K. S., Vishwanath, B. S., and Kemparaju, K. (2011) Ann. Hematol., 90, 569–577.

    Article  PubMed  CAS  Google Scholar 

  34. Sundell, I. B., Ranby, M., Zuzel, M., Robinson, K. A., and Theakston, R. D. G. (2003) Toxicon, 42, 239–247.

    Article  PubMed  CAS  Google Scholar 

  35. Jasti, J., Paramasivam, M., Srinivasan, A., and Singh, T. P. (2004) J. Mol. Biol., 335, 167–176.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kemparaju.

Additional information

Published in Russian in Biokhimiya, 2012, Vol. 77, No. 6, pp. 785–795.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gowtham, Y.J., Kumar, M.S., Girish, K.S. et al. Hemostatic interference of Indian king cobra (Ophiophagus hannah) venom. Comparison with three other snake venoms of the subcontinent. Biochemistry Moscow 77, 639–647 (2012). https://doi.org/10.1134/S0006297912060119

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297912060119

Key words

Navigation