Skip to main content
Log in

Enhanced production and characterization of a β-glucosidase from Bacillus halodurans expressed in Escherichia coli

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

A putative β-glucosidase gene from the genome of Bacillus halodurans C-125 was expressed in E. coli under the regulation of T7lac promoter. On induction with isopropyl-β-D-1-thiogalactopyranoside, the enzyme expressed at ∼40% of the cell protein producing 238 mg/liter culture. With increase in culture cell density to A 600 12 in auto-inducing M9NG medium, β-glucosidase production increased 3-fold. Approximately 70% of the expressed enzyme was in a soluble form, while the rest was in an insoluble fraction of the cell lysate. The soluble and active form of the expressed enzyme was purified by ammonium sulfate precipitation followed by ion-exchange chromatography to a purity >98%. The mass of the enzyme as determined by MALDI-TOF mass spectrometry was 51,601 Da, which is nearly the same as the calculated value. Phylogenetic analysis of the β-glucosidase of B. halodurans was found to cluster with members of the genus Bacillus. Temperature and pH optima of the enzyme were found to be 45°C and 8.0, respectively, under the assay conditions. K m and k cat against p-nitrophenyl-β-D-glucopyranoside were 4 mM and 0.75 sec−1, respectively. To our knowledge, this is the first report of high-level expression and characterization of a β-glucosidase from B. halodurans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BglA:

β-glucosidase A

CDSs:

protein coding sequences

IPTG:

isopropyl-β-D-1-thiogalactopyranoside

MALDI-TOF:

matrix assisted laser desorption ionization-time-of-flight

PNPG:

p-nitrophenyl-β-D-glucopyranoside

References

  1. Gusakov, A. V., and Sinitsyn, A. P. (1992) Biotechnol. Bioeng., 40, 663–671.

    Article  CAS  PubMed  Google Scholar 

  2. Woodward, J., and Wiseman, A. (1982) Enzyme Microb. Technol., 4, 73–79.

    Article  CAS  Google Scholar 

  3. Ogunseitan, A. O. (2003) Afr. J. Biotechnol., 2, 596–601.

    Google Scholar 

  4. Painbeni, E., Valles, S., Polaina, J., and Flors, A. (1992) J. Bacteriol., 174, 3087–3091.

    CAS  PubMed  Google Scholar 

  5. Papalazaridou, A., Charitidou, L., and Sivropoulou, A. (2003) J. Endotoxin Res., 9, 215–224.

    CAS  PubMed  Google Scholar 

  6. Bogas, A. C., Watanabe, M. A. E., Barbosa, A., Vilas-Boas, L., Bonatto, A. C., Dekker, R., Souza, E. M., and Fungaro, M. H. P. (2007) Genet. Mol. Biol., 30, 100–104.

    Article  CAS  Google Scholar 

  7. Paavilainen, S., Hellman, J., and Korpela, T. (1993) Appl. Environ. Microbiol., 59, 927–932.

    CAS  PubMed  Google Scholar 

  8. Takami, H., and Horikoshi, K. (1999) Biosci. Biotech. Biochem., 63, 943–945.

    Article  CAS  Google Scholar 

  9. Takami, H., Nakasone, K., Takaki, Y., Maeno, G., Sasaki, R., Masui, N., Fuji, F., Hirama, C., Nakamura, Y., Ogasawara, N., Kuhara, S., and Horikoshi, K. (2000) Nucleic Acids Res., 28, 4317–4331.

    Article  CAS  PubMed  Google Scholar 

  10. Sadaf, S., Khan, M. A., and Akhtar, M. W. (2007) Biotechnol. Appl. Biochem., 47, 21–26.

    Article  CAS  PubMed  Google Scholar 

  11. Rodriguez, R. L., and Tait, R. C. (1983) Recombinant DNA Techniques: An Introduction, Addision-Wesley Publishing Co.

  12. Laemmli, U. K. (1970) Nature, 277, 680–685.

    Article  Google Scholar 

  13. Cai, Y. J., Buswell, J. A., and Chang, S. T. (1998) Enzyme Microbiol. Technol., 22, 122–129.

    Article  CAS  Google Scholar 

  14. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997) Nucleic Acids Res., 25, 4876–4882.

    Article  CAS  PubMed  Google Scholar 

  15. Page, R. D. M. (1996) Comput. Appl. Biosci., 12, 357–358.

    CAS  PubMed  Google Scholar 

  16. Monteiro, P., Souza, E. M., Yates, M. G., Pedrosa, F. O., and Chubatsu, L. S. (2000) Can. J. Microbiol., 46, 1087–1090.

    Article  CAS  PubMed  Google Scholar 

  17. Giomarelli, B., Schumacher, K. M., Taylor, T. E., Sowder, R. C., Hartley, J. L., McMahon, J. B., and Mori, T. (2005) Protein Exp. Purif., 47, 194–202.

    Article  Google Scholar 

  18. Li, X., and Calza, R. E. (1991) Enzyme Microb. Technol., 13, 622–628.

    Article  CAS  Google Scholar 

  19. Bronnenmeier, K., and Staudenbauer, W. L. (1988) Appl. Microbiol. Biotechnol., 28, 380–386.

    Article  CAS  Google Scholar 

  20. Watanabe, T., Sato, T., Yoshioka, S., Koshijima, T., and Kuwahara, M. (1992) Eur. J. Biochem., 209, 651–659.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. Akhtar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naz, S., Ikram, N., Rajoka, M.I. et al. Enhanced production and characterization of a β-glucosidase from Bacillus halodurans expressed in Escherichia coli . Biochemistry Moscow 75, 513–518 (2010). https://doi.org/10.1134/S0006297910040164

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297910040164

Key words

Navigation