Skip to main content
Log in

Na+/Ca2+ exchange and regulation of cytoplasmic concentration of calcium in rat cerebellar neurons treated with glutamate

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In the present work, the forward and/or reversed Na+/Ca2+ exchange in cerebellar granular cells was suppressed by substitution of Na +0 by Li+ before, during, and after exposure to glutamate for varied time and also using the inhibitor KB-R7943 of the reversed exchange. After glutamate challenge for 1 min, Na +0 /Li+ substitution did not influence the recovery of low [Ca2+]i in a calcium-free medium. A 1-h incubation with 100 μM glutamate induced in the neurons a biphasic and irreve rsible [Ca2+]i rise (delayed calcium deregulation (DCD)), enhancement of [Na+]i, and decrease in the mitochondrial potential. If Na +0 had been substituted by Li+ before the application of glutamate, i.e. the exchange reversal was suppressed during the exposure to glutamate, the number of cells with DCD was nearly fourfold lowered. However, addition of the Na+/K+-ATPase inhibitor ouabain (0.5 mM) not preventing the exchange reversal also decreased DCD in the presence of glutamate. Both exposures decreased the glutamate-caused loss of intracellular ATP. Glucose deprivation partially abolished protective effects of the Na +0 /Li+ substitution and ouabain. KB-R7943 (10 μM) increased 7.4-fold the number of cells with the [Ca2+]i decreased to the basal level after the exposure to glutamate. Thus, reversal of the Na+/Ca2+ exchange reinforced the glutamate-caused perturbations of calcium homeostasis in the neurons and slowed the recovery of the decreased [Ca2+]i in the post-glutamate period. However, for development of DCD, in addition to the exchange reversal, other factors are required, in particular a decrease in the intracellular concentration of ATP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

[Ca2+]i, [Na+]i, [Ca2+]0, [Na+]0 :

intracellular and outer concentrations of Ca2+ and Na+

DCD:

delayed clacium deregulation

DNP:

dinitrophenol

KB-R7943:

2-2-[4-(4-nitrobenzyloxyphenyl]ethylisothiourate methanesulfonate

NMDA:

N-methyl-D-aspartate

PM:

plasma membrane

ΔΨm :

mitochondrial membrane potential

References

  1. Blaustein, M., and Lederer, W. (1999) Physiol. Rev., 79, 764–854.

    Google Scholar 

  2. Brini, M., Mani, S., and Carafoli, E. (2002) Ann. N. Y. Acad. Sci., 976, 376–381.

    Article  PubMed  Google Scholar 

  3. Li, L., Guerini, D., and Carafoli, E. (2000) J. Biol. Chem., 275, 903–910.

    Google Scholar 

  4. Kiedrowski, L., Czyz, A., Baranauskas, G., Li, F.-X., and Lytton, J. (2004) J. Neurochem., 90, 117–128.

    Article  PubMed  CAS  Google Scholar 

  5. Canitano, A., Papa, M., Boscia, F., Castaldo, P., Sellitti, S., Taglialatela, M., and Annunziato, L. (2002) Ann. N. Y. Acad. Sci., 976, 394–404.

    Article  PubMed  CAS  Google Scholar 

  6. Tymianski, M., Charlton, M. P., Carlen, P. L., and Tator, C. H. (1993) Brain Res., 607, 319–323.

    Article  PubMed  CAS  Google Scholar 

  7. Khodorov, B. I., Pinelis, V. G., and Viktorov, I. V. (1998) Vestn. Ros. Akad. Med. Nauk, 8, 41–45.

    Google Scholar 

  8. Duchen, M. (2000) J. Physiol., 529, 57–68.

    Article  PubMed  CAS  Google Scholar 

  9. Nicholls, D. G., and Budd, S. L. (2000) Physiol. Rev., 80, 315–360.

    PubMed  CAS  Google Scholar 

  10. DiPolo, R., and Beauge, L. (2006) Physiol. Rev., 86, 155–203.

    Article  PubMed  CAS  Google Scholar 

  11. Tatsumi, H., and Katayama, Y. (1993) J. Physiol., 464, 165–181.

    PubMed  CAS  Google Scholar 

  12. Mironov, S. L. (1995) Neuropharmacology, 34, 1123–1132.

    Article  PubMed  CAS  Google Scholar 

  13. Wang, G. J., and Thayer, S. A. (1996) J. Neurophysiol., 76, 1611–1621.

    PubMed  CAS  Google Scholar 

  14. Lee, S.-H., Kim, M.-H., Park, K. H., Earm, Y. E., and Ho, W.-K. (2002) J. Neurosci., 22, 6891–6899.

    PubMed  CAS  Google Scholar 

  15. Mattson, M. P., Guthrie, P. B., and Kater, S. B. (1989) FASEB J., 3, 2519–2526.

    PubMed  CAS  Google Scholar 

  16. Koch, R. A., and Barish, M. E. (1994) J. Neurosci., 14, 2585–2593.

    PubMed  CAS  Google Scholar 

  17. Rojas, H., Ramos, M., Mijares, A., and DiPolo, R. (2003) Jap. J. Physiol., 53, 259–269.

    Article  CAS  Google Scholar 

  18. Kiedrowski, L., Wroblewski, J. T., and Costa, E. (1994) Mol. Pharmacol., 45, 1050–1054.

    PubMed  CAS  Google Scholar 

  19. Fierro, L., DiPolo, R., and Llano, I. (1998) J. Physiol. (London), 510, 499–512.

    Article  CAS  Google Scholar 

  20. Randall, R. D., and Thayer, S. A. (1992) J. Neurosci., 12, 1882–1895.

    PubMed  CAS  Google Scholar 

  21. Duchen, M. R., Valdeolmillos, M., O’Neill, S. C., and Eisner, D. A. (1990) J. Physiol., 424, 411–426.

    PubMed  CAS  Google Scholar 

  22. Doi, A., Kakazu, Y., and Akaike, N. (2002) J. Neurophysiol., 87, 1694–1702.

    PubMed  CAS  Google Scholar 

  23. Storozhevykh, T., Sorokina, E., Vinskaya, N., Pinelis, V., Vergun, O., Fayuk, D., Sobolevsky, A., and Khodorov, B. (1996) Int. J. Neurosci., 88, 199–214.

    Article  PubMed  CAS  Google Scholar 

  24. Hoyt, K. R., Arden, S. R., Aizenman, E., and Reynolds, I. J. (1998) Mol. Pharmacol., 53, 742–749.

    PubMed  CAS  Google Scholar 

  25. Kiedrowski, L. (2007) J. Neurochem., 100, 915–923.

    Article  PubMed  CAS  Google Scholar 

  26. Breder, J., Sabelhaus, C. F., Optiz, T., Reymann, K. G., and Schroder, U. H. (2000) Neuropharmacology, 39, 1779–1787.

    Article  PubMed  CAS  Google Scholar 

  27. Pignataro, G., Gala, R., Cuomo, O., Tortiglione, A., Giaccio, L., Castaldo, P., Sirabella, R., Matrone, C., Canitano, A., Amoroso, S., Di Renzo, G., and Annunziato, L. (2004) Stroke, 35, 2566–2570.

    Article  PubMed  CAS  Google Scholar 

  28. Bano, D., Young, K. W., Guerin, C. J., Rizzuto, R., and Carafoli, E. (2005) Cell, 120, 275–285.

    Article  PubMed  CAS  Google Scholar 

  29. Pinelis, V., Segal, M., Greenberger, V., and Khodorov, B. (1994) Biochem. Mol. Biol. Int., 32, 475–482.

    PubMed  CAS  Google Scholar 

  30. Khodorov, B. I., Storozhevykh, T. P., Surin, A. M., Sorokina, A. G., Yuryavuchus, A. I., Borodin, A. V., Vinskaya, N. P., Khaspekov, L. G., and Pinelis, V. G. (2001) Biol. Membr., 18, 419–430.

    Google Scholar 

  31. Reeves, J. P., and Condrescu, M. (2003) J. Gen. Physiol., 122, 621–639.

    Article  PubMed  CAS  Google Scholar 

  32. Vergun, O., Keelan, J., Khodorov, B. I., and Duchen, M. R. (1999) J. Physiol., 519, 451–466.

    Article  PubMed  CAS  Google Scholar 

  33. Czyz, A., Baranauskas, G., and Kiedrowski, L. (2002) J. Neurochem., 81, 379–389.

    Article  PubMed  CAS  Google Scholar 

  34. Iwamoto, T., Watano, T., and Shigekawa, M. (1996) J. Biol. Chem., 271, 391–397.

    Google Scholar 

  35. Sobolevsky, A. I., and Khodorov, B. I. (1999) Neuropharmacology, 38, 1235–1242.

    Article  PubMed  CAS  Google Scholar 

  36. Chinopoulos, C., Tretter, L., Rosa, A., and Adam-Vizi, V. (2000) J. Neurosci., 20, 2094–2103.

    PubMed  CAS  Google Scholar 

  37. Glitsch, H. G. (2001) Physiol. Rev., 81, 1791–1821.

    PubMed  CAS  Google Scholar 

  38. Ames, A. (2000) Brain Res. Rev., 34, 43–68.

    Article  Google Scholar 

  39. Mikhailova, M., Bol’shakov, A., Surin, A., Pinelis, V. G., and Khodorov, B. I. (2003) Biol. Membr., 20, 446–448.

    CAS  Google Scholar 

  40. Dingdledine, R., Borges, K., Bowie, D., and Traynelis, S. F. (1999) Pharmacol. Rev., 51, 7–61.

    Google Scholar 

  41. Rose, C. R., and Ransom, B. R. (1996) J. Neurosci., 16, 5393–5404.

    PubMed  CAS  Google Scholar 

  42. Floyd, C. L., Gorin, F. A., and Lyeth, B. G. (2005) Glia, 51, 35–46.

    Article  PubMed  Google Scholar 

  43. Arakawa, N., Sakaue, M., Yokoyama, I., Hashimoto, H., Koyama, Y., Baba, A., and Matsuda, T. (2000) Biochem. Biophys. Res. Commun., 279, 354–357.

    Article  PubMed  CAS  Google Scholar 

  44. Yu, S. P., and Choi, D. W. (1997) Eur. J. Neurosci., 9, 1273–1281.

    Article  PubMed  CAS  Google Scholar 

  45. Karkanias, N. B., and Papke, R. L. (1999) J. Neurophysiol., 81, 1506–1512.

    PubMed  CAS  Google Scholar 

  46. Nahum-Levy, R., Tam, E., Shavit, S., and Benveniste, M. (2002) J. Neurosci., 22, 2250–2560.

    Google Scholar 

  47. Hashimoto, R., Fujimaki, K., Jeong, M. R., Christ, L., and Chuang, D. M. (2003) FEBS Lett., 538, 145–148.

    Article  PubMed  CAS  Google Scholar 

  48. O’Rourke, Cortassa, S., and Aon, M. A. (2005) Physiology, 20, 303–315.

    Article  PubMed  CAS  Google Scholar 

  49. Reines, A., Pena, C., and de Lores Arnaiz (2001) Neurochem. Int., 39, 301–310.

    Article  PubMed  CAS  Google Scholar 

  50. Marcaida, G., Kosenko, E., Minana, M. D., Grisolia, S., and Felipo, V. (1996) J. Neurochem., 66, 99–104.

    Article  PubMed  CAS  Google Scholar 

  51. Inoue, N., Soga, T., and Kato, T. (1999) Neuroreport, 10, 3289–3293.

    Article  PubMed  CAS  Google Scholar 

  52. Nicholls, D. G. (2004) Curr. Mol. Med., 4, 149–177.

    Article  PubMed  CAS  Google Scholar 

  53. Crompton, M. (1999) Biochem. J., 341, 233–249.

    Article  PubMed  CAS  Google Scholar 

  54. Litsky, M. L., and Pfeiffer, D. R. (1997) Biochemistry, 36, 7071–7080.

    Article  PubMed  CAS  Google Scholar 

  55. Vergun, O. (2007) Biol. Membr., 24, 43–49.

    CAS  Google Scholar 

  56. Storozhevykh, T. P., Sorokina, E. G., Vinskaya, N. P., Chernyak, B. V., and Pinelis, V. G. (2003) in Reception and Intracellular Signalization [in Russian], Proc. Int. Conf., Pushchino, pp. 195–197.

  57. Chinopoulos, C., and Adam-Vizy, V. (2006) FEBS J., 273, 433–450.

    Article  PubMed  CAS  Google Scholar 

  58. Lopina, O. D. (2001) Biochemistry (Moscow), 66, 1122–1131.

    Article  CAS  Google Scholar 

  59. Annunziato, L., Pignataro, G., and Di Renzo, G. F. (2004) Pharmacol. Rev., 56, 633–654.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Storozhevykh.

Additional information

Original Russian Text © T. P. Storozhevykh, E. G. Sorokina, A. V. Vabnitz, Ya. E. Senilova, G. R. Tukhbatova, V. G. Pinelis, 2007, published in Biokhimiya, 2007, Vol. 72, No. 7, pp. 923–933.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Storozhevykh, T.P., Sorokina, E.G., Vabnitz, A.V. et al. Na+/Ca2+ exchange and regulation of cytoplasmic concentration of calcium in rat cerebellar neurons treated with glutamate. Biochemistry Moscow 72, 750–759 (2007). https://doi.org/10.1134/S0006297907070097

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297907070097

Key words

Navigation