Skip to main content
Log in

Dimerization properties of Rabaptin-5 and its isoforms

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Rabaptin-5 plays an important role in intracellular membrane traffic acting as an effector molecule of small GTPases Rab5 and Rab4. It was previously demonstrated that Rabaptin-5 exists as a part of a large protein complex in vivo and is able to form dimers in vitro. Data of X-ray structural analysis suggest that dimerization of Rabaptin-5 is an important feature required for its interaction with Rab5 GTPase. Recently several isoforms of Rabaptin-5 characterized by various deletions in the polypeptide chains have been identified. These isoforms might exhibit functional properties that differ from those of Rabaptin-5. In this study, we have investigated dimerization properties of δ and γ isoforms of Rabaptin-5. In addition, we have provided the first direct evidence for Rabaptin-5 dimerization in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GAL4BD:

DNA-binding domain of the transcription factor GAL4

GAL4AD:

activation domain of the transcription factor GAL4

Rab5-GTP:

GTP-bound form of Rab5

References

  1. Stenmark, H., and Olkkonen, V. M. (2001) Genome Biol., 2, 3007.1–3007.7.

    Article  Google Scholar 

  2. Rybin, V., Ullrich, O., Rubino, M., Alexandrov, K., Simon, I., Seabra, M. C., Goody, R., and Zerial, M. (1996) Nature, 383, 266–269.

    Article  PubMed  CAS  Google Scholar 

  3. Van der Sluijs, P., Hull, M., Webster, P., Male, P., Goud, B., and Mellman, I. (1992) Cell, 70, 729–740.

    Article  PubMed  Google Scholar 

  4. Soennichsen, B., de Renzis, S., Nielsen, E., Rietdorf, J., and Zerial, M. (2000) J. Cell Biol., 149, 901–913.

    Article  Google Scholar 

  5. De Renzis, S., Soennichsen, B., and Zerial, M. (2002) Nat. Cell Biol., 4, 124–132.

    Article  PubMed  CAS  Google Scholar 

  6. Vitale, G., Rybin, V., Christoforidis, S., Thornquist, P.-O., McCaffrey, M., Stenmark, H., and Zerial, M. (1998) EMBO J., 17, 1941–1951.

    Article  PubMed  CAS  Google Scholar 

  7. Stenmark, H., Vitale, G., Ullrich, O., and Zerial, M. (1995) Cell, 83, 423–432.

    Article  PubMed  CAS  Google Scholar 

  8. Horiuchi, H., Lippe, R., McBride, H. M., Rubino, M., Woodman, P., Stenmark, H., Rybin, V., Wilm, M., Ashman, K., Mann, M., and Zerial, M. (1997) Cell, 90, 1149–1159.

    Article  PubMed  CAS  Google Scholar 

  9. Lippe, R., Miaczynska, M., Rybin, V., Runge, A., and Zerial, M. (2001) Mol. Biol. Cell., 12, 2219–2228.

    PubMed  CAS  Google Scholar 

  10. Pagano, A., Crottet, P., Prescianotto-Baschong, C., and Spiess, M. (2004) Mol. Biol. Cell., 15, 4990–5000.

    Article  PubMed  CAS  Google Scholar 

  11. Shiba, Y., Takatsu, H., Shin, H.-W., and Nakayama, K. (2002) J. Biochem., 131, 327–336.

    PubMed  CAS  Google Scholar 

  12. Mattera, R., Arighi, C. N., Lodge, R., Zerial, M., and Bonifacino, J. S. (2003) EMBO J., 22, 78–88.

    Article  PubMed  CAS  Google Scholar 

  13. Korobko, E. V., Kiselev, S. L., and Korobko, I. V. (2002) Gene, 292, 191–197.

    Article  PubMed  CAS  Google Scholar 

  14. Korobko, E. V., Smirnova, E. V., Kiselev, S. L., Georgiev, G. P., and Korobko, I. V. (2000) Dokl. Ros. Akad. Nauk, 370, 1–3.

    CAS  Google Scholar 

  15. Nagelkerken, B., van Anken, E., van Raak, M., Gerez, L., Mohrmann, K., van Uden, N., Holthuizen, J., Pelkmans, L., and van der Sluijs, P. (2000) Biochem. J., 346, 593–601.

    Article  PubMed  CAS  Google Scholar 

  16. Korobko, E., Kiselev, S., Olsnes, S., Stenmark, H., and Korobko, I. (2005) FEBS J., 272, 37–46.

    Article  PubMed  CAS  Google Scholar 

  17. Zhu, G., Zhai, P., Liu, J., Terzyan, S., Li, G., and Zhang, X. C. (2004) Nat. Struct. Mol. Biol., 11, 975–983.

    Article  PubMed  CAS  Google Scholar 

  18. Chevray, P. M., and Nathans, D. (1992) Proc. Natl. Acad. Sci. USA, 89, 5789–5793.

    Article  PubMed  CAS  Google Scholar 

  19. Dufree, T., Becherer, K., Chen, P.-L., Yeh, S.-H., Yang, Y., Kilburn, A. E., Lee, W.-H., and Elledge, S. J. (1993) Genes Dev., 7, 555–569.

    Google Scholar 

  20. Guarente, L. (1983) Meth. Enzymol., 101, 181–191.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Korobko.

Additional information

Original Russian Text © E. V. Korobko, S. L. Kiselev, I. V. Korobko, 2006, published in Biokhimiya, 2006, Vol. 71, No. 12, pp. 1607–1612.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM06-114, September 10, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korobko, E.V., Kiselev, S.L. & Korobko, I.V. Dimerization properties of Rabaptin-5 and its isoforms. Biochemistry (Moscow) 71, 1307–1311 (2006). https://doi.org/10.1134/S0006297906120030

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297906120030

Key words

Navigation