Skip to main content
Log in

Antioxidative Compounds from the Secreted Metabolome of Strain ‘Mucor irregularis Isolate Dro2’—an Endophyte of the Carnivorous Plant Drosera burmannii

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Endophytic fungi isolated from the insectivorous plant Drosera burmannii were tested for their antioxidant potential. The isolate Dro2 was found to have superlative antioxidant activity of the culture broth, scavenging 57.6 ± 0.2% of 2,2-diphenyl-1-picrylhydrazyl free radical. 5.8S rDNA homology led to identification of the isolate as a new strain and it has been named Mucor irregularis isolate Dro2. Optimization studies revealed ethyl acetate to be optimum for extraction of the antioxidant compounds. The crude solvent extract showed 89.6% 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging activity with respect to 86.1% ABTS radical reducing antioxidant power of ascorbic acid. The sample exhibited 824.0 ± 25.5 µM reducing ability in assay, compared to 1204.0 ± 17.8 µM for ascorbic acid. The sample extract displayed IC50DPPH of 53.6 µg/mL. The crude extract was further purified through various chromatography techniques and GC-MS was performed on the purified active fractions to ascertain the nature and identify compounds conferring antioxidant potential to the endophytic fungal isolate. The active fractions were found to comprise multitudinous compounds with varied biological activity. Antioxidant compounds, such as 2,4-di-tert-butylphenol, myristic acid, pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-, palmitic acid, were found in significant abundance. This study substantiates the candidature of the endophytic fungus Mucor irregularis isolate Dro2 as an industrially capable source for obtaining bioactive compounds, particularly antioxidant compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Pham-Huy, L.A., He, H., and Pham-Huy, C., Int. J. Biomed. Sci., 2009, vol. 4, no. 2, pp. 89–96.

    Google Scholar 

  2. Tyrell, R.M., Biochem. Soc. Symp., 1995, vol. 61, pp. 47–53.

    Article  Google Scholar 

  3. Halliwell, B., Antioxidants in Disease Mechanisms and Therapy, August, J.T., Murad, F., Anders, M.W., Coyle, J.T., and Packer, L., Eds., Cambridge: Academic, 1996, vol. 38.

    Google Scholar 

  4. Ahuja, N., Singh, H.P., Batish, D.R., and Kohli, R.K., Pestic. Biochem. Phys., 2015, vol. 118, pp. 64–70.

    Article  CAS  Google Scholar 

  5. Strobel, G., Daisy, B., Castillo, U., and Harper, J., J. Nat. Prod., 2004, vol. 67, no. 2, pp. 257–268.

    Article  CAS  Google Scholar 

  6. Woropong, J., Strobel, G.A., Ford, E.J., Li, J.Y., Baird, G., and Hess, W.M., Mycotaxon, 2001, vol. 79, pp. 67–79.

    Google Scholar 

  7. Blois, M.S., Nature, 1958, vol. 181, pp. 1199–1200.

    Article  CAS  Google Scholar 

  8. Murray, M.G. and Thompson, W.F., Nucleic Acids Res., 1980, vol. 9, no. 19, pp. 4321–4325.

    Article  Google Scholar 

  9. Pan, F., Hou, K., Gao, F., Hu, B., Chen, Q., and Wu, W., Phytomedicine, 2014, vol. 21, no. 8–9, pp. 1104–1109.

    Article  CAS  Google Scholar 

  10. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S., Mol. Biol. Evol., 2011, vol. 28, no. 19, pp. 2731–2739.

    Article  CAS  Google Scholar 

  11. Rajurkar, N.S. and Hande, S.M., J. Pharm. Sci., 2011, vol. 73, no. 2, pp. 146–151.

    CAS  Google Scholar 

  12. Pan, F., Su, T.J., Cai, S.M., and Wu, W., Sci. Rep., 2017, vol. 7, art. 42008.

    Article  CAS  Google Scholar 

  13. Mensor, L.L., Menezes, F.S., Leitão, G.G., Reis, A.S., dos Santos, T.C., Coube, C.S., and Leitão, S.G., Phytother. Res., 2001, vol. 15, no. 2, pp. 127–130.

    Article  CAS  Google Scholar 

  14. Quilliam, R.S. and Jones, D.L., Mycorrhiza, 2010, vol. 20, pp. 341–348.

    Article  Google Scholar 

  15. Akone, S., Daletos, G., Lin, W., and Proksch, P., Z. Naturforsch. C, 2016, vol. 71, no. 1–2, pp. 15–19.

    Article  CAS  Google Scholar 

  16. Gao, S.S., Li, X.M., Williams, K., Proksch, P., Ji, N.Y., and Wang, B.G., J. Nat. Prod., 2016, vol. 79, no. 8, pp. 2066–2074.

    Article  CAS  Google Scholar 

  17. Krishnamoorthy, K. and Subramaniam, P., Int. Sch. Res. Notices, 2014, vol. 2014 567409.

    PubMed  PubMed Central  Google Scholar 

  18. Pan, Y., Zheng, W., and Yang, S., Nat. Prod. Res., 2019, vol. 21, pp. 1–4.

    CAS  Google Scholar 

  19. Varsha, K.K., Devendra, L., Shilpa, G., Priya, S., Pandey, A., and Nampoothiri, K.M., Int. J. Food Microbiol., 2015, vol. 211, pp. 44–50.

    Article  CAS  Google Scholar 

  20. Pan, F., Su, T.J., Deng, K.L., and Wu, W., Mycosystema, 2017, vol. 36, no. 6, pp. 752–765.

    Google Scholar 

  21. Al-Majedy, Y., Al-Amiery, A., Kadhum, A.A., and BakarMohamad, A., Syst. Rev. Pharm., 2017, vol. 8, no. 1, pp. 24–30.

    Article  CAS  Google Scholar 

  22. Shastry, R.P. and Aman, M., Curr. Bioact. Compd., 2019, vol. 15, p. 1.

    Article  Google Scholar 

  23. Qin, W., Liu, C., Jiang, W., Xue, Y., Wang, G., and Liu, S. BMC Microbiol., 2019, vol. 19, p. 50.

    Article  Google Scholar 

  24. Palmieri, A. and Petrini, M., Nat. Prod. Rep., 2018, vol. 36, no. 3, pp. 490–530.

    Article  Google Scholar 

  25. Gos, F.M.W.R., Savi, D.C., Shaaban, K.A., Thorson, J.S., Aluizio, R., Possiede, Y.M., et al., Front. Microbiol., 2017, vol. 8, art. 1642.

    Article  Google Scholar 

  26. Sanjenbam, P., Gopal, J.V., and Kannabiran, K., Appl. Biochem. Microbiol., 2014, vol. 50, no. 5, pp. 429–499.

    Article  Google Scholar 

  27. Awla, H.K., Kadir, J., Othman, R., Rashid, T.S., and Wong, M.Y., Am. J. Plant Sci., 2016, vol. 7, pp. 1077–1085.

    Article  CAS  Google Scholar 

  28. Sheoran, N., ValiyaNadakkakath, A., Munjal, V., Kundu, A., Subaharan, K., Venugopal, V., et al., Microbiol. Res., 2015, vol. 173, pp. 66–78.

    Article  CAS  Google Scholar 

  29. Kaschula, C.H., Egan, T.J., Hunter, R., Basilico, N., Parapini, S., Taramelli, D., et al., J. Med. Chem., 2002, vol. 45, pp. 3531–3539.

    Article  CAS  Google Scholar 

  30. Sivakumar, R., Jebanesan, A., Govindarajan, M., and Rajasekar, P., Asian Pac. J. Trop. Med., 2011, vol. 4, no. 9, pp.706–710.

    Article  CAS  Google Scholar 

  31. Lata, R., Chowdhury, S., Gond, S.K., and White, J.F. Jr., Lett. Appl. Microbiol., 2018, vol. 66, no. 4, pp. 268–276.

    Article  CAS  Google Scholar 

  32. Lubna, Asaf, S., Hamayun, M., Khan, A.L., Waqas, M., Khan, M.A., Jan, R., et al., Plant Physiol. Biochem., 2018, vol. 128, pp. 13–23.

    Article  CAS  Google Scholar 

  33. Zhu, L., Li, T., Wang, C., Zhang, X., Xu, L., Xu, R., and Zhao, Z., Environ. Sci. Pollut. Res. Int., 2018, vol. 25, no. 35, pp. 35232–35241.

    Article  CAS  Google Scholar 

  34. Ghate, N.B., Chaudhuri, D., Das, A., Panja, S., and Mandal, N., PLoS One, 2015, vol. 10, no. 5, art. e0128221. https://doi.org/10.1371/journal.pone.0128221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Strobel, G. and Daisy, B., Microbiol. Mol. Biol. Rev., 2003, vol. 67, no. 4, pp. 491–502.

    Article  CAS  Google Scholar 

Download references

Funding

Authors are grateful to the Council of Scientific and Industrial Research, India, for financial support in the form of junior research fellowship to SM.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, experiments, data collection and analysis were performed by S. Mandal. S. Maity helped in chromatography, HPLC and GC-MS studies. Manuscript was prepared by S. Mandal. Insightful comments were received from S. Maity and D. Banerjee which helped in drafting the final version of the manuscript. All the research work was supervised by D. Banerjee.

Corresponding author

Correspondence to D. Banerjee.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Maity, S. & Banerjee, D. Antioxidative Compounds from the Secreted Metabolome of Strain ‘Mucor irregularis Isolate Dro2’—an Endophyte of the Carnivorous Plant Drosera burmannii. Appl Biochem Microbiol 57 (Suppl 1), S88–S97 (2021). https://doi.org/10.1134/S0003683821100069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821100069

Keywords:

Navigation