Skip to main content
Log in

Effect of Light Quality on the Biomass Yield, Photosystem 2 Fluorescence, and the Total Essential Oil Content of Ocimum basilicum

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The effect of artificial light with different spectral compositions (white, WW; white–red, WR; white–blue, WB; and white–red—blue, WRB) on the wet weight, plant height, total leaf surface area, variable fluorescence parameters of photosystem 2 (PS2), and the content of the total fraction of essential oils in 30‑ and 50-day-old Cinnamon Aroma basil plants was studied. Thirty-day-old basil plants adapted to WB light were characterized by the highest chlorophyll content and the highest value of the photochemical quenching coefficient of PS2 fluorescence but by the smallest wet weight and total leaf surface as compared to plants grown in light with a different spectral composition. A longer adaptation (50 days) of the basil to illumination of a different spectral composition at the same intensity led to plant alignment in terms of chlorophyll content and height. A positive correlation was found between changes in the photochemical quenching coefficient of PS2 fluorescence and wet weight in 50-day-old plants. Fifty-day-old plants grown in light with a high proportion of red radiation (WR and WRB) and having generative shoots with buds contained the largest amount of the total fraction of essential oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Protasova, N.N., Fiziol. Rastenii, 1987, vol. 34, no. 4.

  2. Bantis, F., Ouzounis, Th., and Radoglou, K., Sci. Horticult., 2016, vol. 198, pp. 277–283.

    Article  CAS  Google Scholar 

  3. Hernandez, R. and Kubota, C., Environ. Exp. Bot., 2016, vol. 121, p. 66.

    Article  CAS  Google Scholar 

  4. Darko, E., Heydarizadeh, P., Schoefs, B., and Sabzalian, M.R., Phil. Trans. R. Soc. B, 2014, vol. 369, pp. 1–7.

    Article  Google Scholar 

  5. Massa, D.G., Kim, Hyeon-H., and Wheeler, R.M., Hortscience, 2008, vol. 43, no. 7, pp. 1952–1956.

    Article  Google Scholar 

  6. Samuoliene, G., Brazaityte, A., Sirtautas, R., Novickovas, A., and Duchovskis, P., J. Food Agricult. Environ., 2011, vol. 9, nos. 3–4, pp. 271–274.

    CAS  Google Scholar 

  7. Ruban, A.V., Lavaud, J., Rousseau, B., Guglielmi, G., Horton, P., and Etienne, A.-L., Photosynth. Res., 2004, vol. 82, pp. 165–175.

    Article  CAS  Google Scholar 

  8. Baker, N.R., Annu. Rev. Plant Biol., 2008, vol. 59, pp. 89–113.

    Article  CAS  Google Scholar 

  9. Protasova, N.N. and Kefeli, V.I., in Fotosintez i rost vysshikh rastenii, ikh vzaimosvyaz' i korrelyatsii. Fiziologiya fotosinteza (Photosynthesis and Growth of Higher Plants, Their Relationship and Correlations. Physiology of Photosynthesis), Moscow: Nauka, 1982, pp. 251–255.

  10. Lewinsohn, E., Ziv-Raz, I., Dudai, N., Tadmor, Y., Lastochkin, E., Larkov, O., Chaimovitsh, D., Ravid, U., Putievsky, E., Pichersky, E., and Shoham, Y., Plant Sci., 2000, vol. 160, pp. 27–35.

    Article  CAS  Google Scholar 

  11. Schreiber, U., Schliwa, U., and Bilger, W., Photosynth. Res., 1986, vol. 10, p. 51.

    Article  CAS  Google Scholar 

  12. Lichtenthaler, H.K., Methods Enzymol., 1987, vol. 148, pp. 350–382.

    Article  CAS  Google Scholar 

  13. Anderson, J.M., FEBS Lett., 1980, vol. 117, no. 1, pp. 327–331.

    Article  CAS  Google Scholar 

  14. Mullet, J.E., Burke, J.J., and Arntzen, Ch.J., Plant Physiol., 1980, vol. 65, pp. 814–822.

    Article  CAS  Google Scholar 

  15. Björkman, O. and Demmig, B., Planta, 1987, vol. 170, pp. 489–504.

    Article  Google Scholar 

  16. Karnachuk, R.A., Protasova, N.N., Dobrovol’skii, M.V., Revina, T.A., and Nichiporovich, A.A., Fiziol. Rast., 1987, vol. 34, no. 1, pp. 51−59.

    CAS  Google Scholar 

  17. Glovatskaya, I.F., Fiziol. Rast., 2005, vol. 52, no. 6, pp. 822–829.

    Google Scholar 

  18. Ahmad, M., Grancher, N., Heil, M., Black, R.C., Giovani, B., Galland, P., and Lardemer, D., Plant Physiol., 2002, vol. 129, pp. 774–785.

    Article  CAS  Google Scholar 

  19. Johnson, E., Bradley, M., Harberd, N.P., and Whitelam, C.C., Plant Physiol., 1994, vol. 105, p. 141.

    Article  CAS  Google Scholar 

  20. Bagnall, D.J., King, R.W., Whitelam, C.C., Boylan, M.T., Wagner, D., and Quail, P.H., Plant Physiol., 1995, vol. 108, p. 1495.

    Article  CAS  Google Scholar 

  21. Zhou, Yu. and Singh, B.R., Plant Growth Regul., 2002, vol. 38, p. 165.

    Article  CAS  Google Scholar 

  22. Dudareva, N., Pichersky, E., and Gershenzon, J., Plant Physiol., 2004, vol. 135, pp. 1893–1902.

    Article  CAS  Google Scholar 

  23. Il’chenko, G.N. and Berezkin, N.G., Vestn. AGU, 2013, vol. 125, no. 4, pp. 52–56.

Download references

ACKNOWLEDGMENTS

The research results were obtained with the use of the scientific equipment of the Center for Industrial Biotechnology Federal State Institution, Federal Research Center, Fundamentals of Biotechnology, Russian Academy of Sciences.

Funding

This study was supported by a grant from the Ministry of Sciences and Higher Education of the Russian Federation (agreement no. 075-15-2019-1696, unique identifier of the project RFMEFI60419X0229) on the topic: “The development of technology for controlled vegetation of target crops in dynamic lighting.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Bolychevtseva.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zotov, V.S., Bolychevtseva, Y.V., Khapchaeva, S.A. et al. Effect of Light Quality on the Biomass Yield, Photosystem 2 Fluorescence, and the Total Essential Oil Content of Ocimum basilicum. Appl Biochem Microbiol 56, 336–343 (2020). https://doi.org/10.1134/S0003683820030175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820030175

Keywords:

Navigation