Skip to main content
Log in

A novel high molecular weight thermo-acidoactive β-glucosidase from Beauveria bassiana

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

An extracellular high molecular weight β-glucosidase was secreted by a local strain P1 of Beauveria bassiana. The enzyme was produced in the presence of various carbon sources, namely glucose, maltose, lactose, glycerol, starch, wheat bran and gruel. The highest level of β-glucosidase activity was produced with wheat bran at the concentration of 3%. Glucose caused a repressor effect on the β-glucosidase expression in a dose-dependent manner. The highest enzyme production level was obtained at initial pH of 6.0 and 7.0 in the culture medium. The zymography analysis revealed that B. bassiana secreted a β-glucosidase with high molecular weight between 400 and 600 kDa. The enzymatic preparation was characterized and showed temperature and pH optima of 55°C and 5.0, respectively. The enzyme was stable at 40 and 50°C but its stability declined at 60°C. Interestingly, this β-glucosidase had high stability at acid and basic pH saving its initial activity after 24 h incubation at pH from 3.0 to 11.0. It was stable also in presence of monovalent Na+ and K+ ions saving 60% of its initial activity at 2 M salts. Bivalent metal ions preserved totally or partially the enzymatic activity; in addition, Ba2+ was revealed as an activator. This is the first report that focuses on the production and the biochemical characterization of a β-glucosidase from the entomopathogenic fungus, B. bassiana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gruno, M., Valjamae, P., Pettersson, G., and Johansson, G., Biotechnol. Bioeng., 2004, vol. 86, no. 5, pp. 503–511.

    Article  CAS  PubMed  Google Scholar 

  2. Xu, H.W., Dai, G.F., Liu, G.Z., Wang, J.F., and Liu, H.M., Bioorg. Med. Chem., 2007, vol. 15, no. 12, pp. 4247–4255.

    Article  CAS  PubMed  Google Scholar 

  3. Yu, R., Wang, L., Duan, X., and Gao, P.F.B., Biotechnol. Lett., 2007, vol. 29, no. 7, pp. 1037–1043.

    Article  CAS  PubMed  Google Scholar 

  4. Haki, G.D. and Rakshit, S.K., Bioresour. Technol., 2003, vol. 89, no. 1, pp. 17–34.

    Article  CAS  PubMed  Google Scholar 

  5. Harhangi, H.R., Steenbakkers, P.J.M., Akhmanova, A., Jetten, M.S.M., Drift, C.V.D., and Camp, O.D., Biochim. Biophys. Acta, 2002, vol. 1574, no. 3, pp. 293–303.

    Article  CAS  PubMed  Google Scholar 

  6. Réczey, K., Brumbauer, A., Bollók, M., Szengyel, Z., and Zacchi, G., Appl. Biochem. Biotechnol., 1998, vol. 70/72, no. 1, pp. 225–235.

    Article  Google Scholar 

  7. Saibi, W., Amouri, B., and Gargouri, A., Appl. Microbiol. Biotechnol., 2007, vol. 77, no. 2, pp. 293–300.

    Article  CAS  PubMed  Google Scholar 

  8. Turner, P., Pramhed, A., Kanders, E., Hedstrom, M., Karlsson, E.N., and Logan, D.T., Acta Crystallogr., 2007, vol. 63, no. 9, pp. 802–806.

    CAS  Google Scholar 

  9. Yan, Q., Zhou, X.W., Zhou, W., Li, X.W., Feng, M.Q., and Zhou, P.F.B., J. Microbiol. Biotechnol., 2008, vol. 18, no. 6, pp. 1081–1089.

    CAS  PubMed  Google Scholar 

  10. Han, Y. and Chen, H.F.B., Bioresour. Technol., 2008, vol. 99, no. 14, pp. 6081–6087.

    Article  CAS  PubMed  Google Scholar 

  11. Bisignano, G., Tomaino, A., Lo Cascio, R., Crisafi, G., Uccella, N., and Saija, A., J. Pharm. Pharmacol., 1999, vol. 51, no. 8, pp. 971–974.

    Article  CAS  PubMed  Google Scholar 

  12. Turner, P., Svensson, D., Adlercreutz, P., and Karlsson, E.N.F.B., J. Biotechnol., 2007, vol. 130, no. 1, pp. 67–74.

    Article  CAS  PubMed  Google Scholar 

  13. Amouri, B. and Gargouri, A., Biochem. Eng. J., 2006, vol. 32, no. 3, pp. 191–197.

    Article  CAS  Google Scholar 

  14. Yoon, J.J, Kim, K.Y., and Cha, C.J., J. Microbiol. (Seoul Korea), 2008, vol. 46, no. 1, pp. 51–55.

    CAS  Google Scholar 

  15. Papalazaridou, A., Charitidou, L., and Sivropoulou, A., J. Endotoxin Res., 2003, vol. 9, no. 4, pp. 215–224.

    CAS  PubMed  Google Scholar 

  16. Rehner, S.A., Minnis, A.M., Sung, G.-H., Luangsaard, J.J., Devotto, L., and Humber, R.A., Mycologia, 2011, vol. 103, no. 5, pp. 1055–1073.

    Article  PubMed  Google Scholar 

  17. Borgi, I. and Gargouri, A., FEMS Microbiol. Lett., 2014, vol. 351, no. 1, pp. 23–31.

    Article  CAS  PubMed  Google Scholar 

  18. Mandels, M. and Reese, E., J. Bacteriol., 1957, vol. 73, no. 2, pp. 269–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bradford, M.M., Anal. Biochem., 1976, vol. 72, nos. 1–2, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  20. Laemmli, UK., Nature, 1970, vol. 227, no. 5259, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  21. Zimbardi, A.L.R.L., Sehn, C., Meleiro, L.P., Souza, F.H.M., Masui, D.C., Nozawa, M.S., et al., Int. J. Mol. Sci., 2013, vol. 14, no. 2, pp. 2875–2902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saibi, W., Abdeljalil, S., and Gargouri, A., World J. Microbiol. Biotechnol., 2011, vol. 27, no. 8, pp. 1765–1774.

    Article  CAS  Google Scholar 

  23. Masui, D.C., Zimbardi, A.L.R.L., Souza, F.H.M., Guimarães, L.H.S., Furriel, R.P.M., and Jorge, J.A., World J. Microbiol. Biotechnol., 2012, vol. 28, no. 8, pp. 2689–2701.

    Article  CAS  PubMed  Google Scholar 

  24. Suto, M. and Tomita, F., J. Biosci. Bioeng., 2001, vol. 92, no. 4, pp. 305–311.

    Article  CAS  PubMed  Google Scholar 

  25. Quesada-Moraga, E. and Vey, A., Mycol. Res., 2004, vol. 108, no. 4, pp. 441–452.

    Article  CAS  PubMed  Google Scholar 

  26. Xiao, G., Ying, S.-H., Zheng, P., Wang, Z.-L., Zhang, S., Xie, X.-Q., et al., Sci. Rep., 2012, vol. 2, pp. 483–483.

    PubMed  PubMed Central  Google Scholar 

  27. Blanchard, D.J., Cicek, M., Chen, J., and Esen, A., J. Biol. Chem., 2001, vol. 276, no. 15, pp. 11895–11901.

    Article  CAS  PubMed  Google Scholar 

  28. Yu, H.Y., Kittur, F.S., Bevan, D.R., and Esen, A., Phytochemistry, 2009, vol. 70, nos. 11–12, pp. 1355–1365.

    Article  CAS  PubMed  Google Scholar 

  29. Manjula, P. and Saroj, M., Gene, 1997, vol. 190, no. 1, pp. 45–51.

    Article  Google Scholar 

  30. Parry, N.J., Beever, D.E., Owen, E., Vandenberghe, I., Van Beeumen, J., and Bhat, M.K., Biochem. J., 2001, vol. 353, no. 1, pp. 117–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, D., Zhang, R., Yang, X., Zhang, Z., Song, S., Miao, Y. and Shen, Q., Microb. Cell Fact., 2012, vol. 11, pp. 25.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gargouri.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borgi, I., Gargouri, A. A novel high molecular weight thermo-acidoactive β-glucosidase from Beauveria bassiana . Appl Biochem Microbiol 52, 602–607 (2016). https://doi.org/10.1134/S0003683816060028

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683816060028

Keywords

Navigation