Skip to main content
Log in

Construction of a butyrate-producing E. coli strain without the use of heterologous genes

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Multistage construction of an E. coli strain containing no foreign genes which is capable of producing butyrate has been carried out. At the first stage, deletions in gene fadR encoding a protein repressor of an operon for fatty acid degradation and gene aceF responsible for the synthesis of pyruvate dehydrogenase were introduced in the strain MG1655 genome. Then, a mutant obtained from the above strain by induced mutagenesis and capable of growth on ethanol as a sole carbon source under aerobic conditions was selected. It was shown that growth of the mutant on ethanol is provided by two mutations. One of them (a substitution: 257G → A) is located in the regulatory region of gene adhE that controls the synthesis of alcohol-dehydrogenase; the other, containing a substitution Glu568 → Lys, affects the structural portion of the gene. As a result of the consequent mutagenesis of the obtained strain and selection on indicating media, variants capable of growing on butyrate and butanol as sole carbon sources and putatively bearing mutations in gene atoC (encoding transcriptional activator of atoDAB operon) were selected. At the last stage of the work, gene atoB, encoding the synthesis of the thiolase II enzyme, was placed under the control of a constitutive promoter P tet , and the functional allele of gene aceF was introduced. The resulting E. coli strain (ΔfadR, adhE, atoC, P tet -atoB) accumulates 800 mg/l of butyrate upon growth on glucose-containing medium under semi-anaerobic (oxygen limited) conditions. Introduction of an additional deletion in gene ldhA encoding lactate dehydrogenase in the strain genome leads to a further growth of a butyrate production up to 1.3 g/l.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CL:

culture liquid

PCR:

polymerase chain reaction

LB:

medium-Luria-Bertani medium

TAC:

tricarboxylic acid circle

Amp:

ampicillin

Ara:

arabinose

Cm:

chloramphenicol

References

  1. Lee, S.Y., Park, J.H., Jang, S.H., Nielsen, L.K., Kim, J., and Jung, K.S., Biotechnol. Bioeng., 2008, vol. 101, no. 2, pp. 209–228.

    Article  CAS  PubMed  Google Scholar 

  2. Atsumi, S., Cann, A.F., Connor, M.R., Shen, C.R., Smith, K.M., Brynildsen, M.P., Chou, K.J.Y., Hanail, T., and Liao, J.C., Metabol. Eng, 2008, vol. 10, pp. 305–311.

    Article  CAS  Google Scholar 

  3. Inui, M., Suda, M., Kimura, S., Yasuda, K., Suzuki, H., Toda, H., Yamamoto, S., Okino, S., Suzuki, N., and Yukawa, H., Appl. Microbiol. Biotechnol., 2008, vol. 77, pp. 1305–1316.

    Article  CAS  PubMed  Google Scholar 

  4. Li, F., Hinderberger, J., Seedorf, H., Zhang, J., Buckel, W., and Thauer, R.K., J. Bacteriol., 2008, vol. 190, pp. 843–850.

    Article  CAS  PubMed  Google Scholar 

  5. Clark, D.P. and Rod, M.L., J. Mol. Evol., 1987, vol. 25, pp. 151–158.

    Article  CAS  PubMed  Google Scholar 

  6. Minaeva, N.I., Gak, E.R., Zimenkov, D.V., Skorokhodova, A.Yu., Biryukova, I.V., and Mashko, S.V., BMC Biotechnol., 2008, vol. 8, pp. 63.

    Article  PubMed  Google Scholar 

  7. Datsenko, K.A. and Wanner, B.L., Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 6640–6645.

    Article  CAS  PubMed  Google Scholar 

  8. Peredelchuk, M.Y. and Bennet, G.N., Gene, 1997, vol. 187, pp. 231–238.

    Article  CAS  PubMed  Google Scholar 

  9. Lutz, R. and Bujard, H., Nucleic Acids Res., 1997, vol. 25, pp. 1203–1210.

    Article  CAS  PubMed  Google Scholar 

  10. Miller, J., Experiments in Molecular Genetics, New York: Cold Spring Harbor, 1972. Published under the title Eksperimenty v molekulyarnoi genetike, Moscow: Mir, 1976.

    Google Scholar 

  11. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., New York: Cold Spring Harbor Lab., 1989.

    Google Scholar 

  12. Sanger, F., Nicklen, S., and Coulson, A.R., Proc. Natl. Acad. Sci. USA, 1977, vol. 74, pp. 5463–5467.

    Article  CAS  PubMed  Google Scholar 

  13. Horton, C.E. and Benett, G.N., Enzymes Microbial Technol., 2006, vol. 38, pp. 937–943.

    Article  CAS  Google Scholar 

  14. Nunn, W.D., Giffin, K., Clark, D., and Cronan, J.E., J. Bacteriol., 1983, vol. 154, pp. 554–560.

    CAS  PubMed  Google Scholar 

  15. Overath, P., Pauli, G., and Schairer, H.U., Eur. J. Biochem., 1969, vol. 7, pp. 559–574.

    Article  CAS  PubMed  Google Scholar 

  16. Salanitro, J.P. and Wegener, W.S., J. Bacteriol., 1971, vol. 108, pp. 885–892.

    CAS  PubMed  Google Scholar 

  17. Vanderwinkel, E., Furmanski, P., Reeves, H.C., and Ajl, S.J., Biochem. Biophys. Res. Commun., 1968, vol. 33, pp. 902–908.

    Article  CAS  PubMed  Google Scholar 

  18. Clark, D.P. and Cronan, J.R., Jr., J. Bacteriol., 1980, vol. 141, pp. 177–183.

    CAS  PubMed  Google Scholar 

  19. Kaga, N., Umitsuki, G., Clark, D.P., Nagai, K., and Wachi, M., Biochem. Biophys. Res. Commun., 2002, vol. 295, pp. 92–97.

    Article  CAS  PubMed  Google Scholar 

  20. Causey, T.B., Shanmugam, K.T., Yomano, L.P., and Ingram, L.O., Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 2235–2240.

    Article  CAS  PubMed  Google Scholar 

  21. Eiteman, M.A. and Altman, E., Trends Biotechnol., 2006, vol. 24, pp. 530–536.

    Article  CAS  PubMed  Google Scholar 

  22. Kim, Y., Ingram, L.O., and Shanmugam, K.T., Appl. Env. Microbiol., 2007, vol. 73, no. 6, pp. 1766–1771.

    Article  CAS  Google Scholar 

  23. Wallace, K.K., Bao, Z.Y., Dai, H., Digate, R., Schuler, G., Speedie, M.K., and Reynolds, K.A., Eur. J. Biochem., 1995, vol. 223, pp. 954–962.

    Article  Google Scholar 

  24. Ensign, S.A., Mol. Microbiol., 2006, vol. 61, no. 2, pp. 274–276.

    Article  CAS  PubMed  Google Scholar 

  25. Bermejo, L.L., Welkner, N.E., and Papoustakis, E.T., Appl. Env. Microbiol., 1998, vol. 64, pp..

  26. Kidwell, J., Valentin, H.E., and Dennis, D., Appl. Environ. Microbiol., 1995, vol. 61, no. 4, pp. 1391–1398.

    CAS  PubMed  Google Scholar 

  27. Sato, S., Nomura, C.T., Abe, H., Doi, Y., and Tsuge, T., J. Biosc. Bioeng., 2007, vol. 103, no. 1, pp. 38–44.

    Article  CAS  Google Scholar 

  28. Donaldson, G.K., Huang, L.L., Mag-Gio-Hall, L.A., Nagarajan, V., Nakamura, Ch.E., and Suh, W., WO 041269, A2, 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Seregina.

Additional information

Original Russian Text © T.A. Seregina, R.S. Shakulov, V.G. Debabov, A.S. Mironov, 2009, published in Biotekhnologiya, 2009, No. 6, pp. 24–35.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seregina, T.A., Shakulov, R.S., Debabov, V.G. et al. Construction of a butyrate-producing E. coli strain without the use of heterologous genes. Appl Biochem Microbiol 46, 745–754 (2010). https://doi.org/10.1134/S000368381008003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368381008003X

Key words

Navigation