Skip to main content
Log in

Numerical modeling of the Arctic Ocean ice system response to variations in the atmospheric circulation from 1948 to 2007

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The results of model calculations aimed at reproducing climate changes in the Arctic Ocean due to variations in the atmospheric circulation are presented. The combined ocean-ice numerical model is based on NCAR/NCEP reanalysis data and its modified version of CIAF on the state of the lower atmosphere, radiative fluxes, and precipitation from 1948 to the present. The numerical experiments reveal the effect of the ice cover, water circulation, and thermohaline structure of the Arctic Ocean on variations in the state of the atmosphere. We found the heating and cooling periods in the Atlantic water layer, as well as the freshwater accumulation regimes in the Canadian Basin and freshwater flow through the Fram Strait and Canadian Archipelago straits. The numerical model reproduces a reconfiguration of the water circulation of the surface and intermediate layers of the ocean, a shift in the boundary between Atlantic and Pacific waters, and a significant reduction of the ice area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Quadfasel, “Warming in the Arctic,” Science 350, 385 (1991).

    Google Scholar 

  2. E. Carmack, R. Macdonald, R. Perkin, et al., “Evidence for Warming of Atlantic Water in the Southern Canadian Basin of the Arctic Ocean: Evidence from the Larsen-93 Expedition,” Geophys. Rev. Lett. 22, 1061–1065 (1995).

    Article  Google Scholar 

  3. G. V. Alekseev, L. V. Bulatov, V. F. Zakharov, and V. V. Ivanov, “Thermal Expansion of Atlantic Waters in the Arctic Basin,” Meteorol. Gidrol., No. 7, 69–78 (1998).

  4. J. Morison, M. Steele, and R. Andersen, “Hydrography of the Upper Arctic Ocean Measured from the Nuclear Submarine U.S.S. Pargo,” Deep-Sea Res. 45, 15–38 (1998).

    Article  Google Scholar 

  5. R. W. Lindsay and J. Zhang, “The Thinning of Arctic Sea Ice, 1988–2003: Have We Passed a Tipping Point?,” J. Clim. 18, 4879–4894 (2005).

    Article  Google Scholar 

  6. D. A. Rothrock, Y. Yu, and G. A. Maykut, “Thinning of the Arctic Sea-Ice Cover,” Geophys. Rev. Lett. 26, 3469–3472 (1999).

    Article  Google Scholar 

  7. I. V. Polyakov, A. Beszczynska, E. C. Carmack, et al., “One More Step toward a Warmer Arctic,” Geophys. Rev. Lett. 32, doi: 10.1029/2005GL023740, L17605 (2005).

  8. V. P. Dymnikov, V. N. Lykosov, and E. M. Volodin, “Problems of Modeling Climate and Climate Change,” Izv. Akad. Nauk, Fiz. Atm. Okeana 42, 618–636 (2006) [Izv., Atmos. Ocean. Phys. 42, 568–585 (2006)].

    Google Scholar 

  9. S. Manabe and R. J. Stouffer, “Multiple-Century Response of a Coupled Ocean-Atmosphere Model to an Increase of Atmospheric Carbon Dioxide,” J. Clim., No. 7, 5–23 (1994).

    Google Scholar 

  10. E. Kalnay, M. Kanamitsu, R. Kistler, et al., “The NCEP/NCAR 40-Year Reanalysis Project,” Bull. Am. Meteorol. Soc., No. 77, 437–471 (1996).

    Google Scholar 

  11. V. A. Ryabchenko, G. V. Alekseev, I. A. Neelov, and A. Yu. Dvornikov, “Simulation of Climate Changes in the Arctic Basin with an Ocean-Ice Circulation Model without Reference to Climatic Salinity on the Ocean Surface,” Tr. AANII, Climate Change and Ocean-Atmosphere Interaction in Polar Regions 446, 60–82 (2003).

    Google Scholar 

  12. N. G. Yakovlev, “Coupled Model of Ocean General Circulation and Sea Ice Evolution in the Arctic Ocean,” Izv. Akad. Nauk, Fiz. Atm. Okeana 39, 394–409 (2003) [Izv., Atmos. Ocean. Phys. 39, 355–368 (2003)].

    Google Scholar 

  13. S. N. Moshonkin, N. A. Dianskii, D. A. Eidinov, and A. V. Bagno, “Simulation of the Coupled Circulation of the North Atlantic and Arctic Ocean,” Okeanologiya 44, 811–825 (2004).

    Google Scholar 

  14. G. Holloway, F. Dupont, E. Golubeva, et al., “Water Properties and Circulation in Arctic Ocean Models,” J. Geophys. Res. 112, doi: 10.1029/2006JC003642, C04S03 (2007).

  15. O. M. Johannessen, L. Bengtsson, M. W. Miles, et al., “Arctic Climate Change: Observed and Modelled Temperature and Sea Ice Variability,” Tellus A 56, C. 328–341 (2004).

    Article  Google Scholar 

  16. W. G. Large and S. G. Yeager, “Diurnal to Decadal Global Forcing for Ocean and Sea-Ice Models: The Data Sets and Flux Climatologies,” Technical Report TN-460+STR, NCAR (2004).

  17. V. I. Kuzin, Method of Finite Elements in Simulating Oceanic Processes (VTs SO AN SSSR, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  18. E. N. Golubeva, Yu. A. Ivanov, V. I. Kuzin, and G. A. Platov, “Numerical Simulation of the World Ocean Circulation with Consideration for the Upper Quasi-Homogeneous Layer,” Okeanologiya 32, 395–405 (1992).

    Google Scholar 

  19. E. N. Goloubeva, “On the Numerical Modeling of the World Ocean Circulation in the Sigma Coordinate System,” NCC Bull./Series Num. Model. Atmos. Ocean Environ. Studies 7, 1–7 (2001).

    Google Scholar 

  20. E. N. Golubeva and G. A. Platov, “On Improving the Simulation of Atlantic Water Circulation in the Arctic Ocean,” J. Geophys. Res. 112, doi: 10.1029/2006JC003734, C04S05 (2007).

  21. E. N. Golubeva, “Numerical Simulation of the Dynamics of Atlantic Waters in the Arctic Basin with the Use of the QUISKEST Scheme,” Vych. Tekhnol. 13(5), 11–24 (2008).

    Google Scholar 

  22. B. P. Leonard, “A Stable and Accurate Convective Modeling Procedure Based on Quadratic Upstream Interpolation,” Comput. Meth. Appl. Mech. Eng. 19, 59–98 (1979).

    Article  Google Scholar 

  23. W. D. Hibler, “A Dynamic Thermodynamic Sea Ice Model,” J. Phys. Oceanogr. 9, 815–846 (1979).

    Article  Google Scholar 

  24. E. C. Hunke and J. K. Dukowicz, “An Elastic-Viscous-Plastic Model for Ice Dynamics,” J. Phys. Oceanogr. 27, 1849–1867 (1997).

    Article  Google Scholar 

  25. C. M. Bitz and W. H. Lipscomb, “An Energy-Conserving Thermodynamic Model of Sea Ice,” J. Geophys. Res. 104, 15 669–15 677 (1999).

    Article  Google Scholar 

  26. W. H. Lipscomb and E. C. Hunke, “Modeling Sea Ice Transport Using Incremental Remapping,” Mon. Weather Rev. 132, 1341–1354 (2004).

    Article  Google Scholar 

  27. R. J. Murray, “Explicit Generation of Orthogonal Grids for Ocean Models,” J. Comput. Phys. 126, 251–273 (1996).

    Article  Google Scholar 

  28. M. Steele, R. Morley, and W. Ermold, “PHC: A Global Hydrography with a High Quality Arctic Ocean,” J. Clim. 14, 2079–2087 (2000).

    Article  Google Scholar 

  29. C. J. Völosmarty, B. Fekete, and B. A. Tucker, River Discharge Database, Version 1.1 (RivDIS v1.0 Suppl.) (Univ. of New Hampshire, Durham, 1998).

    Google Scholar 

  30. J. Bjerknes, “Atlantic Air-Sea Interaction,” in Advances in Geophysics (Academic, New York, 1964), Vol. 10, pp. 1–82.

    Google Scholar 

  31. V. V. Shuleikin, Marine Physics (Nauka, Moscow, 1083) [in Russian].

    Google Scholar 

  32. L. A. Mysak and S. A. Venegas, “Decadal Climate Oscillations in the Arctic: A New Feedback Loop for Atmosphere-Ice-Ocean Interactions,” Geophys. Rev. Lett. 25, 3607–3610 (1998).

    Article  Google Scholar 

  33. R. R. Dickson, T. J. Osborn, J. W. Hurrell, et al., “The Arctic Ocean Response to the North Atlantic Oscillation,” J. Clim. 13, 2671–2696 (2000).

    Article  Google Scholar 

  34. J. W. Hurrell, “Decadal Trends in the North Atlantic Oscillation Regional Temperatures and Precipitation,” Science, No. 269, 676–679 (1995).

  35. V. T. Timofeev, Water Masses of the Arctic Basin (Gidrometeoizdat, Leningrad, 1960) [in Russian].

    Google Scholar 

  36. A. F. Treshnikov and G. I. Baranov, Circulation of the Waters in the Arctic Basin (Gidrometeoizdat, Leningrad, 1972) [in Russian].

    Google Scholar 

  37. Z. M. Gudkovich, “Major Patterns of Ice Drift in the Central Polar Basin,” in Proceedings of the Conference on Atmosphere-Hydrosphere Interaction in the North Atlantic (Gidrometeoizdat, Leningrad, 1961), MGG, issues 3–4 [in Russian].

    Google Scholar 

  38. E. G. Nikiforov and A. O. Shpaikher, Regularities in Forming Large-Scale Oscillations of the Hydrologic Regime in the Arctic Ocean (Gidrometeoizdat, Leningrad, 1980) [in Russian].

    Google Scholar 

  39. A. Y. Proshutinsky and M. Johnson, “Two Circulation Regimes of the Wind-Driven Arctic Ocean,” J. Geophys. Res. C 102, 12 493–12 504 (1997).

    Google Scholar 

  40. A. Proshutinsky, R. H. Bourke, and F. A. McLaughlin, “The Role of the Beaufort Gyre in Arctic Climate Variability: Seasonal to Decadal Climate Scales,” Geophys. Rev. Lett. 29, doi: 10.1029/2002GL015847, 2100 (2000).

    Article  Google Scholar 

  41. S. Hakkinen and A. Proshutinsky, “Freshwater Content Variability in the Arctic Ocean,” J. Geophys. Res. 109, doi: 10.1029/2003JC001940, C03051 (2004).

  42. J. H. Swift, K. Aagaard, L. Timokhov, et al., “Long-Term Variability of Arctic Ocean Waters: Evidence from a Reanalysis of the EEWG Data Set,” J. Geophys. Res. 110, doi: 10.1029/2004JC002312 (2005).

  43. M. Karcher, R. Gerdes, F. Kauker, et al., “Arctic Warming-Evolution and Spreading of the 1990s Warm Event in the Nordic Seas and in the Arctic Ocean,” J. Geophys. Res. 108, doi: 10.11029/2001JC002624 (2003).

  44. P. Kinney, M. E. Arhelger, and D. C. Burrell, “Chemical Characteristics of Water Masses in the Amerasian Basin of the Arctic Ocean,” J. Geophys. Res. 75, 4097–4104 (1970).

    Article  Google Scholar 

  45. R. M. Moore, M. G. Lowings, and F. C. Tan, “Geochemical Profiles in the Central Arctic Ocean: Their Relation to Freezing and Shallow Circulation,” J. Geophys. Res. C 88, 2667–2674 (1983).

    Article  Google Scholar 

  46. L. G. Anderson, G. Bjork, O. Holby, et al., “Water Masses and Circulation in the Eurasian Basin: Results from the Oden 91 Expedition,” J. Geophys. Res. C 99, 3273–3283 (1994).

    Article  Google Scholar 

  47. F. A. McLaughlin, E. C. Carmack, R. W. Macdonald, et al., “Physical and Geochemical Properties across the Atlantic/Pacific Water Mass Front in the Southern Canadian Basin,” J. Geophys. Res. C 101, 1183–1197 (1996).

    Article  Google Scholar 

  48. F. A. McLaughlin, E. C. Carmack, R. W. Macdonald, et al., “The Canada Basin 1989–1995: Upstream Events and Far-Field Effects of the Barents Sea Branch,” J. Geophys. Res. 107, doi: 10.1029/2001JC000904, 3082 (2002).

    Article  Google Scholar 

  49. W. Maslowski, B. Newton, P. Schlosser, et al., “Modeling Recent Climate Variability in the Arctic Ocean,” Geophys. Rev. Lett. 27, 3743–3746 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Golubeva.

Additional information

Original Russian Text © E.N. Golubeva, G.A. Platov, 2009, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2009, Vol. 45, No. 1, pp. 145–160.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golubeva, E.N., Platov, G.A. Numerical modeling of the Arctic Ocean ice system response to variations in the atmospheric circulation from 1948 to 2007. Izv. Atmos. Ocean. Phys. 45, 137–151 (2009). https://doi.org/10.1134/S0001433809010095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433809010095

Keywords

Navigation