Skip to main content
Log in

Experimental and Theoretical Study of Influence of Nature of Counterion on Electroosmotic Water Transport in Sulfonated Cation-Exchange Membranes

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

The free solvent transport number in an MF-4SK perfluorinated membrane in solutions of alkaline metal chlorides and hydrochloric acid is for the first time calculated within the framework of a capillary model based on the data of standard contact porosimetry and membrane conductometry. The reasons for the change in the structural characteristics and specific conductivity upon varying the nature of the counterion are discussed. The portion of through mesopores in MF-4SK homogeneous and MK-40 heterogeneous sulfonated cation-exchange membranes is estimated using the experimental data on the water transport numbers in solutions of electrolytes of different natures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. Yaqub and W. Lee, Sci. Total Environ. 681, 551 (2019).

    Article  Google Scholar 

  2. J. Havelka, H. Fárová, T. Jiříček, T. Kotala, and J. Kroupa, Water Sci. Technol. 79, 1580 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. G. J. Doornbusch, M. Tedesco, J. W. Post, Z. Borneman, and K. Nijmeijer, Desalination 464, 105 (2019).

    Article  CAS  Google Scholar 

  4. K. V. Protasov, S. A. Shkirskaya, N. P. Berezina, and V. I. Zabolotskii, Russ. J. Electrochem. 46, 1131 (2010).

    Article  CAS  Google Scholar 

  5. L. Han, S. Galier, and H. Roux-de Balmann, Desalination 373, 38 (2015).

    Article  CAS  Google Scholar 

  6. A. H. Galama, M. Saakes, H. Bruning, H. H. M. Rijnaarts, and J. W. Post, Desalination 342, 61 (2013).

    Article  Google Scholar 

  7. B. Sun, M. Zhang, S. Huang, Z. Cao, L. Lu, and X. Zhang, Sep. Purif. Technol. 281, 119907 (2022).

    Article  CAS  Google Scholar 

  8. B. Sun, M. Zhang, S. Huang, J. Wang, X. Zhang, Desalination 498, 114793 (2021).

    Article  CAS  Google Scholar 

  9. S. Porada, W. J. van Egmond, J. W. Post, M. Saakes, and H. V. M. Hamelers, J. Membr. Sci. 552, 22 (2018).

    Article  CAS  Google Scholar 

  10. J. O. Bockris and K. N. Reddy, Modern Electrochemistry. Ionics (Kluwer Academic Publishers, London, 2002).

    Book  Google Scholar 

  11. G. Xie and T. Okada, Electrochim. Acta 41, 1569 (1996).

    Article  CAS  Google Scholar 

  12. R. Sprocati and M. Rolle, Water Res. 213, 118161 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. T. Yamanaka, T. Takeguchi, H. Takahashi, and W. Ueda, J. Electrochem. Soc. 156, B831 (2009).

    Article  CAS  Google Scholar 

  14. J. Garrido, V. Compan, M. L. Lopez, and D. G. Miller, J. Phys. Chem. 101, 5740 (1997).

    Article  CAS  Google Scholar 

  15. C. Larchet, B. Auclair, and V. Nikonenko, Electrochim. Acta 49, 1711 (2004).

    Article  CAS  Google Scholar 

  16. H. M. Park and Y. J. Choi, Int. J. Heat Mass Transfer 52, 4279 (2009).

    Article  CAS  Google Scholar 

  17. P. Schaetzel, Q. T. Nguyen, and B. Riffault, J. Membr. Sci. 240, 25 (2004).

    Article  CAS  Google Scholar 

  18. A. N. Filippov, Colloid J. 80, 716 (2018).

    Article  CAS  Google Scholar 

  19. Y. Xin, Y.-X. Zheng, and Y.-X. Yu, Mol. Phys. 114, 2328 (2016).

    Article  CAS  Google Scholar 

  20. P. Meares, J. Polymer Science 20, 507 (1956).

    Article  CAS  Google Scholar 

  21. I. V. Falina, V. I. Zabolotsky, O. A. Demina, and N. V. Sheldeshov, J. Membr. Sci. 573, 520 (2019).

    Article  CAS  Google Scholar 

  22. Yu. M. Vol’fkovich, Elektrokhimiya 20, 669 (1984).

    Google Scholar 

  23. N. P. Berezina, S. A. Shkirskaya, A. A.-R. Sycheva, and M. V. Krishtopa, Colloid J. 71, 397 (2008).

    Article  Google Scholar 

  24. N. Kononenko, V. Nikonenko, D. Grande, C. Larchet, L. Dammak, M. Fomenko, and Yu. Volfkovich, Adv. Colloid Interface Sci. 246, 196 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. M. I. Bakeev, Hydration and Physicochemical Properties of Electrolyte Solutions (Nauka, Alma-Ata, 1978) [in Russian].

  26. I. T. Goronovskii, Yu. P. Nazarenko, and E. F. Nekryach, Quick Reference Guide to Chemistry (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  27. R. A Robinson and R. H. Stoks, Electrolyte Solutions, 2nd Ed. (Dover Publications, 2002).

    Google Scholar 

  28. Handbook of Electrochemistry, Ed. by A. M. Sukhotin (Khimiya, Leningrad, 1981) [in Russian].

    Google Scholar 

  29. N. P. Berezina, N. A. Kononenko, O. A. Dyomina, and N. P. Gnusin, Adv. Colloid Interface Sci. 139, 3 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. E. Yu. Safronova, V. I. Volkov, A. A. Pavlov, A. V. Chernyak, E. V. Volkov, and A. B. Yaroslavtsev, Russ. J. Inorg. Chem. 56, 156 (2011).

    Article  CAS  Google Scholar 

  31. N. H. Jalani and R. Datta, J. Membr. Sci. 264, 167 (2005).

    Article  CAS  Google Scholar 

  32. I. A. Stenina, P. Sistat, A. I. Rebrov, G. Pourcelly, and A. B. Yaroslavtsev, Desalination 170, 49 (2004).

    Article  CAS  Google Scholar 

  33. G. Pourcelly, A. Oikonomou, and C. Gavach, J. Electroanal. Chem. 287, 43 (1990).

    Article  CAS  Google Scholar 

  34. V. I. Volkov, E. V. Volkov, S. V. Timofeev, E. A. Sanginov, A. A. Pavlov, E. Yu. Safronova, I. A. Stenina, and A. B. Yaroslavtsev, Russ. J. Inorg. Chem. 55, 315 (2010).

    Article  CAS  Google Scholar 

  35. I. V. Falina, O. A. Demina, and V. I. Zabolotskii, Membr. Membr. Tekhnol. 9, 81 (2019).

    Article  Google Scholar 

  36. A. N. Filippov, E. Yu. Safronova, and A. B. Yaroslavtsev, J. Membr. Sci. 471, 110 (2014).

    Article  CAS  Google Scholar 

  37. K. D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, Chem. Rev. 104, 4637 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was financially supported by the Kuban Science Foundation within scientific project no. H-21.1/23/21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Falina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falina, I.V., Kononenko, N.A., Shkirskaya, S.A. et al. Experimental and Theoretical Study of Influence of Nature of Counterion on Electroosmotic Water Transport in Sulfonated Cation-Exchange Membranes. Membr. Membr. Technol. 4, 281–289 (2022). https://doi.org/10.1134/S2517751622050043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751622050043

Keywords:

Navigation