Skip to main content
Log in

Analyzing space-time dynamics of the ecological niche: A case study with the pine marten (Martes martes) population

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The potential of discriminant analysis for assessing the parameters of an ecological niche is demonstrated by a case study with the pine marten (Martes martes L., 1758) via analysis of the dependence of marten footprint presence on the relief and environmental characteristics represented by remote sensing data, as well as calculation of the probability of encountering the footprints on the territory of the Central Forest Nature Reserve and its buffer zone. Analysis performed individually for each of 11 months over a 3-year observation period demonstrated that the measure of species association with environmental conditions and the pattern of species distribution are to a considerable degree determined by weather conditions. The overall dependence on the environment becomes stronger under adverse conditions. Methods for integrating the data of monthly analyses into a general map of habitat types are demonstrated. Wide possibilities for applying the described technology to research and practical problems in population ecology are underlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Binns, N.A., Habitat Quality Index Procedures Manual, W Cheyenne, WY: yoming Game and Fish Dept., 1982.

    Google Scholar 

  • Danilov, D.N., Osnovy okhotoustroistva (Game Management Principles), Moscow: Izd. Tsentrosoyuza, 1966.

    Google Scholar 

  • Formozov, A.N., Formula for Quantitative Assessment of Mammals by Footsteps, Zool. Zh., 1932, vol. 2, no. 2, pp. 66–69.

    Google Scholar 

  • Giller, P., The Structure of the Community and the Ecological Niche, Moscow: Mir, 1988.

    Google Scholar 

  • Hays, R.L., Summers, C., and Seitz, W., Estimating Wildlife Habitat Variables, USDI Fish and Wildlife Service, FWS/OBS-81/47, 1981.

  • Hirzel, A.H., Hausser, J., and Perrin, N., Biomapper 3.1. Lausanne. Lab. for Conservation Biology, 2002, http://www.unil.ch/biomapper.

  • Hirzel, A.H., Hausser, J., Chesser, D., and Perrin, N., Ecological-Niche Factor Analysis: How to Compute Habitat-Suitability Maps without Absence Data?, Ecology, 2002, vol. 83, no. 7, pp. 2027–2036.

    Article  Google Scholar 

  • Hirzel, A.H., Helfer, V., and Metral, F., Assessing HabitatSuitability Models with a Virtual Species, Ecol. Modell., 2001, vol. 145, pp. 111–121.

    Article  Google Scholar 

  • Hutchinson, G.E., Concluding Remarks, Cold Spring Harbor Symposium on Quantitative Biology “Population Studies: Animal Ecology and Demography,” 1957, vol. 22, pp. 415–427.

    Google Scholar 

  • Kendall, M. and Moran, P., Geometricheskie veroyatnosti (Geometrical Probabilities), Moscow: Nauka, 1972.

    Google Scholar 

  • Knize, A.A. and Leont’ev, V.A., Osnovnye voprosy okhottaksatsii (The Main Problems of Game Bird and Animal Inventory), Moscow: Izd. MOIP, 1934.

    Google Scholar 

  • Kozlov, D.N., Puzachenko, M.Yu., Fedyaeva, M.V., and Puzachenko, Yu.G., Mapping of Spatial Variation of Land Cover Characteristics Based on Remote Sensing Data and Digital Terrain Models, Izv. Akad. Nauk, Ser. Geogr., 2008, no. 4, pp. 112–124.

  • Krenke, A.N. and Puzachenko, Yu.G., Mapping Land Cover Based on Remote Sensing Information, Ekol. Planir. Upravl., 2008, no. 7, pp. 10–25.

  • Kuzyakin, V.A., Okhotnich’ya taksatsiya (Hunting Inventory), Moscow: Lesn. Prom., 1979.

    Google Scholar 

  • Looijen, R., Holism and Reductionism in Biology and Ecology, The Mutual Dependence of Higher and Lower Level Research Programmes, Netherland: Springer, 1999.

    Google Scholar 

  • L’vov, D.K., Moshkin, A.V., and Puzachenko, Yu.G., Informational Analysis of the Distribution of Arboviruses, Vestn. Mosk. Univ., Ser. 5: Geogr., 1967, pp. 76–86.

  • Manel, S., Dias, J.M., and Ormerod, S.J., Comparing Discriminant Analysis, Neural Networks and Logistic Regression for Predicting Species Distributions: A Case Study with a Himalayan River Bird, Ecol. Modell., 1999, vol. 120, nos. 2–3, pp. 337–347.

    Article  Google Scholar 

  • Manel, S., Williams, H.C., and Ormerod, S.J., Evaluating Presence-Absence Models in Ecology: The Need to Account for Prevalence, J. Appl. Ecol., 2001, vol. 38, no. 5, pp. 921–931.

    Article  Google Scholar 

  • McPherson, J.M., Jetz, W., and Rogers, D.J., The Effects of Species’ Range Sizes on the Accuracy of Distribution Models: Ecological Phenomenon or Statistical Artefact?, J. Appl. Ecol., 2004, vol. 41, no. 5, pp. 811–823.

    Article  Google Scholar 

  • Mirkin, B.M. and Rozenberg, G.S., Quantitative Methods of Classification, Ordination, and Geobotanical Indication, in Itogi nauki i tekhniki. Botanika (Advances in Science and Technology. Ser. Botany), Moscow: VINITI, 1979, vol. 3, pp. 71–137.

    Google Scholar 

  • Moreno, J.F., et al., Analysis, Investigation and Monitoring of Water Resources, for the Management of Multi-Purpose Reservoirs, Survey of Remote Sensing Data Analysis Methods, Contract no. ENV4-CT98-0740 Version 1.0, EO Signal Analysis Methods, 1999. http://dataserv.cetp.ipsl.fr/AIMWATER/reports/EOsurvey-report.pdf.

  • Ordination and Classification of Plant Communities, in Handbook of Vegetation Science, Pt. V, Whittaker, R.H., Ed., The Hague: Junk, 1973.

    Google Scholar 

  • Pereleshin, S.D., Analysis of the Formulas for the Quantitative Assessment of Mammals by Footsteps, Byul. MOIP. Otd. Biol., 1950, vol. 55, no. 3, pp. 17–20.

    Google Scholar 

  • Peterson, A.T., Ecologic Niche Modeling and Spatial Patterns of Disease Transmission, Emerging Infectious Diseases, 2006, vol. 12, no. 12, pp. 1822–1826.

    PubMed  Google Scholar 

  • Pielou, E.C., Mathematical, Ecology, New York: Wiley, 1977.

    Google Scholar 

  • Polikarpov, N.P., Chebakova, N.M., and Nazimova, D.I., Klimat i gornye lesa Yuzhnoi Sibiri (Climate and Mountain Forests of Southern Siberia), Novosibirsk: Nauka, 1986.

    Google Scholar 

  • Priklonskii, S.G., Winter Route Counts of Game Animals, in Metody ucheta okhotnich’ikh zhivotnykh v lesnoi zone. Trudy Okskogo Gosudarstvennogo Zapovednika (Methods of Counting Game Animals in the Forest Zone. Transactions of the Okskii State Reserve), 1973, no. 9, pp. 35–50.

  • Puzachenko, Yu.G. and Koshkina, A.K., The Use of Conjunctions in the Analysis of Habitat Conditions of the Muskrat and Predicting Its Optimum Abundance, in Sovremennye problemy izucheniya dinamiki chislennosti populyatsii zhivotnykh (Materialy soveshch.) (Current Problems of Studying the Dynamics of Abundance of Animal Populations (Proc. Conf.)), Moscow, 1964, pp. 12–13.

  • Puzachenko, Yu.G. and Moshkin, A.V., Information and Logical Analysis in Health and Geographical Research, in Itogi nauki: Meditsinskaya geografiya (Advances and Science: Medical Geography), Moscow: Nauka, 1969, pp. 5–74.

    Google Scholar 

  • Puzachenko, Yu.G. and Skulkin, V.S., Struktura rastitel’nosti lesnoi zony SSSR. Sistemnyi analiz (The Structure of the Vegetation of the Forest Zone of the USSR. Systemic Analysis), Moscow: Nauka, 1981.

    Google Scholar 

  • Puzachenko, Yu.G. and Zvenigorodskaya, M.E., Criteria for Evaluation of the Critical State of Populations of Mammals, in Populyatsionnye issledovaniya zhivotnykh v zapovednikakh (Population Studies of Animals in Nature Reserves), Leningrad: Nauka, 1988, pp. 8–24.

    Google Scholar 

  • Puzachenko, Yu.G., Matematicheskie metody v ekologicheskikh i geograficheskikh issledovaniyakh (Mathematical Methods in Ecological and Geographical Studies), Moscow: Academia, 2004.

    Google Scholar 

  • Puzachenko, Yu.G., General Methodological Problems of Information, in Ekoinformatika, Sokolov, V.E., Ed., Leningrad: Gidrometeoizdat, 1992, pp. 7–131.

    Google Scholar 

  • Puzachenko, Yu.G., Information Analysis of Ranges, Tez. IV Mezhvuzovskoi Zoogeograficheskoi Konferentsii (Abstracts of IV Interinstitutional Zoogeographical Conference), Odessa, 1966, pp. 224–226.

  • Puzachenko, Yu.G., Onufrenya, I.A., and Aleshchenko, G.M., Spectral Analysis of the Hierarchical Organization of Terrain, Izv. Akad. Nauk, Ser. Geogr., 2002, no. 4, pp. 29–38.

  • Puzachenko, Yu.G., Principles of Information Analysis, in Statisticheskie metody issledovaniya geosistem (Statistical Methods of Investigation of Geosystems), Vladivostok: DVNTS Akad. Nauk SSSR, 1976, pp. 5–37.

    Google Scholar 

  • Puzachenko, Yu.G., The Main Problems of Game Bird and Animal Inventory, Okhota Okhotn. Khoz., 1964, no. 10, pp. 11–24.

  • Rozenberg, G.S. and Ryanskii, F.N., Teoreticheskaya i prikladnaya ekologiya: uchebnoe posobie (Theoretical and Applied Ecology: Tutorial), 2nd ed., Nizhnevartovsk: Izd. Nizhnevart. Ped. Inst., 2005.

    Google Scholar 

  • Rozenberg, G.S., Modeli v fitotsenologii (Models in Phytocoenology), Moscow: Nauka, 1984.

    Google Scholar 

  • Sandlerskiy, R.B. and Puzachenko, Yu.G., Thermodynamics of Biogeocenoses Based on Remote Sensing Information, Zh. Obshch. Biol., 2009, vol. 70, no. 2, pp. 121–142.

    Google Scholar 

  • Stockwell, D.R.B. and Noble, I.R., Induction of Sets of Rules from Animal Distribution Data: A Robust and Informative Method of Analysis, Mathematics and Computers in Simulation, 1992, vol. 33, nos. 5–6, pp. 385–390.

    Article  Google Scholar 

  • Stockwell, D.R.B., et al., The Use of the GARP Genetic Algorithm and Internet Grid Computing in the Lifemapper World Atlas of Species Biodiversity, Ecol. Modeling, 2006, vol. 195, nos. 1–2, pp. 139–145.

    Article  Google Scholar 

  • Stockwell, D.R.B., Improving Ecological Niche Models by Data Mining Large Environmental Datasets for Surrogate Models, Ecol. Modell., 2006, vol. 192, pp. 188–196.

    Article  Google Scholar 

  • Whittaker, R.H., Gradient Analysis of Vegetation, Biol. Rev., 1967, vol. 42, no. 2, pp. 207–264.

    Article  PubMed  CAS  Google Scholar 

  • Yurgenson, P.B., Methods of Bonitation of Fur Animals of the Family Mustelidae, Zool. Zh., 1934, vol. 13, no. 1, pp. 117–127.

    Google Scholar 

  • Zheltukhin, A.S., Puzachenko, Yu.G., Kozlov, D.N., Sandlerskiy, R.B., and Korablev, N.P., Application of Modern Methods of Collection and Analysis of Field Data for the Mapping of Habitats and Assessing the Quality of the Environment of Mammals and Birds in Nature Reserves, Trudy Tsentral’nogo Lesnogo Gosudarstvennogo Prirodnogo Biosfernogo Zapovednika (Transactions of the Central Forest State Natural Biosphere Reserve), Velikie Luki, 2007, vol. 5, pp. 227–244.

    Google Scholar 

  • Landsat 7 Science Data Users Handbook, 2009, http://ltpwww.gsfc.nasa.go

  • USGS Landsat Project, 2009, http://erg.usgs.gov/isb/pubs/factsheets/fs02303.html

  • WhyWhere 2.0: The Portal of the new WhyWhere 2.0 http://landshape.org/enm/whywhere-20-server-2/

  • Erdas Product Information http://www.erdas.com/tabid/84/currentid/1050/default.aspx

  • ENVI Software — Image Processing and Analysis Solution http://www.ittvis.com/ProductServices/ENVI.aspx

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Puzachenko.

Additional information

Original Russian Text © Yu.G. Puzachenko, A.S. Zheltukhin, R.B. Sandlerskiy, 2010, published in Zhurnal Obshchei Biologii, 2010, Vol. 71, No. 6, pp. 467–487.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puzachenko, Y.G., Zheltukhin, A.S. & Sandlerskiy, R.B. Analyzing space-time dynamics of the ecological niche: A case study with the pine marten (Martes martes) population. Biol Bull Rev 1, 245–264 (2011). https://doi.org/10.1134/S207908641103008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207908641103008X

Keywords

Navigation