Skip to main content
Log in

Interrelation of Telomeres with Transposable Elements in Aging

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

The nature of telomere functioning, which affects the aging of the body, reflects global processes in the genome conditioned by the regulatory influence of transposable elements that are sequentially activated during ontogenesis. This is determined by the fact that centromeres and centromere proteins, telomeres and telomerases, introns and spliceosome components, transcription factors and their binding sites, noncoding RNAs and their targets in protein-coding gene sequences evolutionarily originated from transposable elements. The interrelation of these structural and functional elements of the genome is dynamically changing in individual development and depends on the nature of activations and transpositions of transposable elements. Each species is characterized by a specific set of transposable elements and associated tandem repeats, which reflect the epigenetic tuning of ontogenesis, mainly as a part of centromeres and telomeres; the impact on them is promising for the development of mechanisms of lifespan regulation. This is due to the ability of ribozymes and peptides to interact with specific sequences of DNA nucleotides, especially in tandem repeats. An important approach to the study of the relationship of transposons with telomeres, centromeres, and subtelomeric regions for the regulation of aging may be the study of the role of the peptides and microRNAs that unite them, the complex application of which has high potential for geroprotective effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Bondarev, I.E. and Khavinson, V.K., Suppression of alternative telomere lengthening in cancer cells with reverse transcriptase inhibitors, Adv. Gerontol., 2016, vol. 6, no. 4, pp. 272–274.

    Article  Google Scholar 

  2. Mustafin, R.N. and Khusnutdinova, E.K., Noncoding parts of genomes as the basis of epigenetic heredity, Vavilovskii Zh. Genet. Sel., 2017, vol. 21, no. 6, pp. 742–749.

    Google Scholar 

  3. Mustafin, R.N. and Khusnutdinova, E.K., The interaction of transposons with epigenetic factors in aging, Usp. Gerontol., 2017, vol. 30, no. 4, pp. 516–528.

    CAS  Google Scholar 

  4. Pavlov, K.I., Mukhin, V.N., Klimenko, V.M., and Anisimov, V.N., The telomere-telomerase system and mental processes in aging, norm and pathology (literature review), Adv. Gerontol., 2017, vol. 7, no. 2, pp. 120–129.

    Article  Google Scholar 

  5. Khavinson, V.Kh., Solovyov, A.Yu., and Shataeva, L.K., Molecular mechanism of interaction between oligopeptides and double-stranded DNA, Bull. Exp. Biol. Med., 2006, vol. 141, no. 4, pp. 457–461.

    Article  CAS  PubMed  Google Scholar 

  6. Khavinson, V.Kh., Peptidnaya regulyatsiya stareniya (Peptide Regulation of Aging), St. Petersburg: Nauka, 2009.

  7. Alter, B.P., Giri, N., Savage, S.A., and Rosenberg, P.S., Cancer in dyskeratosis congenital, Blood, 2009, vol. 113, no. 26, pp. 6549–6557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alzohairy, A.M., Gyulai, G., Jansen, R.K., and Bahieldin, A., Transposable elements domesticated and neofunctionaized by eukaryotic genomes, Plasmid, 2013, vol. 69, pp. 1–15.

    Article  CAS  PubMed  Google Scholar 

  9. Arkhipova, I.R., Yushenova, I.A., and Rodriguez, F., Giant reverse transcriptase-encoding transposable elements at telomeres, Mol. Biol. Evol., 2017, vol. 34, no. 9, pp. 2245–2257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Armanios, M., Syndromes of telomere shortening, Annu. Rev. Genomics Hum. Genet., 2009, vol. 10, pp. 45–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aschacher, T., Sampl, S., Kaser, L., et al., The combined use of known antiviral reverse transcriptase inhibitors AZT and DDI induce anticancer effects at low concentrations, Neoplasia, 2012, vol. 14, pp. 44–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aviv, A. and Shay, J.W., Reflections on telomere dynamics and ageing-related diseases in humans, Philos. Trans. R. Soc., B, 2018, vol. 373, art. ID 20 160 436.

  13. Belancio, V.P., Roy-Engel, A.M., and Deininger, P.L., All you need to know about retroelements in cancer, Semin. Cancer Biol., 2010, vol. 20, no. 4, pp. 200–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bertuch, A.A., The molecular genetics of the telomere biology disorders, RNA Biol., 2016, vol. 13, no. 8, pp. 696–706.

    Article  PubMed  Google Scholar 

  15. Biscotti, M.A., Canapa, A., Forconi, M., et al., Transcription of tandemly repetitive DNA: functional roles, Chromosome Res., 2015, vol. 23, pp. 463–477.

    Article  CAS  PubMed  Google Scholar 

  16. Blackburn, E.H. and Gall, J.G., A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena,J. Mol. Biol., 1978, vol. 120, pp. 33–53.

    Article  CAS  PubMed  Google Scholar 

  17. Bolzan, A.D., Interstitial telomeric sequences in vertebrate chromosomes: origin, function, instability and evolution, Mutat. Res., 2017, vol. 3, pp. 51–65.

    Article  CAS  Google Scholar 

  18. Calado, R.T. and Young, N.S., Telomere diseases, N. Engl. J. Med., 2009, vol. 361, no. 24, pp. 2353–2365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Casacuberta, E., Drosophila: retrotransposons making up telomeres, Viruses, 2017, vol. 9, art. ID E192.

    Article  PubMed  CAS  Google Scholar 

  20. Cesare, A.J. and Reddel, R.R., Alternative lengthening of telomeres: models, mechanisms and implications, Nat. Rev. Genet., 2010, vol. 11, pp. 319–330.

    Article  CAS  PubMed  Google Scholar 

  21. Chan, F.L. and Wong, L.H., Transcription in the maintenance of centromere chromatin identity, Nucleic Acids Res., 2012, vol. 40, pp. 11 178–11 188.

    Article  CAS  Google Scholar 

  22. Cheng, Z.J. and Murata, M., A centromeric tandem repeat family originating from a part of Ty3/gypsy-retroelement in wheat and its relatives, Genetics, 2003, vol. 164, pp. 665–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheong, C., Hong, K.U., and Lee, H.W., Mouse models for telomere and telomerase biology, Exp. Mol. Med., 2003, vol. 35, pp. 141–153.

    Article  CAS  PubMed  Google Scholar 

  24. Cherif, H., Tarry, J.L., Ozanne, S.E., and Hales, C.N., Ageing and telomeres: a study into organ- and gender-specific telomere shortening, Nucleic Acids Res., 2003, vol. 31, pp. 1576–1583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Choi, J., Southworth, L.K., Sarin, K.Y., et al., TERT promotes epithelial proliferation through transcriptional control of a Myc- and Wnt-related developmental program, PLoS Genet., 2008, vol. 4, no. 1, p. e10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Couzigou, J.M., Lauressergues, D., Becard, G., and Comier, J.P., miRNA-encoded peptides (miPEPs): A new tool to analyze the role of miRNAs in plant biology, RNA Biol., 2015, vol. 12, pp. 1178–1180.

    Article  PubMed  PubMed Central  Google Scholar 

  27. de Sotero-Caio, C.G., Cabral-de-Mello, D.C., Calixto, M.D.S., et al., Centromeric enrichment of LINE-1 retrotransposons and its significance for the chromosome evolution of Phyllostomid bats, Chromosome Res., 2017, vol. 25, pp. 313–325.

    Article  PubMed  CAS  Google Scholar 

  28. Feschotte, C., Transposable elements and the evolution of regulatory networks, Nat. Rev. Genet., 2008, vol. 9, pp. 397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Garavis, M., Gonzalez, C., and Villasante, A., On the origin of the eukaryotic chromosome: the role of noncanonical DNA structures in telomere evolution, Genome Biol. Evol., 2013, vol. 5, pp. 1142–1150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gent, J.I. and Dawe, R.K., RNA as a structural and regulatory component of the centromere, Annu. Rev. Genet., 2012, vol. 46, pp. 443–453.

    Article  CAS  PubMed  Google Scholar 

  31. Gill, Z., Nieuwoudt, M., and Ndifon, W., The Hayflick limit and age-related adaptive immune, Gerontology, 2018, vol. 64, pp. 135–139.

    Article  CAS  PubMed  Google Scholar 

  32. Gim, J., Ha, H., Ahn, K., et al., Genome-wide identification and classification of microRNAs derived from repetitive elements, Genomic Inf., 2014, vol. 12, no. 4, pp. 261–267.

    Article  Google Scholar 

  33. Gladyshev, E.A. and Arkhipova, I.R., A subtelomeric non-LTR retrotansposon Hebe in the bdelloid rotifer Adineta vaga is subject to inactivation by deletions but not 5'truncations, Mobile DNA, 2010, vol. 1, p. 12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Greider, C.W. and Blackburn, E.H., Identification of a specific telomere terminal transferase activity in Tetrahymena extracts, Cell, 1985, vol. 43, pp. 405–413.

    Article  CAS  PubMed  Google Scholar 

  35. Guttman, M. and Rinn, J.L., Modular regulatory principles of large non-coding RNAs, Nature, 2012, vol. 482, pp. 339–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hara, T., Hirai, Y., Jahan, I., et al., Tandem repeat sequences evolutionarily related to SVA-type retrotransposons are expanded in centromere region of the western hoolock gibbon, a small ape, J. Hum. Genet., 2012, vol. 57, pp. 760–765.

    Article  CAS  PubMed  Google Scholar 

  37. Hastie, N.D., Dempster, M., Dunlop, M.G., et al., Telomere reduction in human colorectal carcinoma and with ageing, Nature, 1990, vol. 346, no. 6287, pp. 866–868.

    Article  CAS  PubMed  Google Scholar 

  38. Jankowska, M., Fuchs, J., Klocke, E., et al., Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution, Chromosoma, 2015, vol. 124, pp. 519–528.

    Article  PubMed  Google Scholar 

  39. Johnson, R. and Guigo, R., The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs, RNA, 2014, vol. 20, no. 7, pp. 959–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Joly-Lopez, Z. and Bureau, T.E., Exaptation of transposable element coding sequences, Curr. Opin. Genet. Dev., 2018, vol. 49, pp. 34–42.

    Article  CAS  PubMed  Google Scholar 

  41. Klutstein, M., Fennell, A., Farnandez-Alvarez, A., and Cooper, J.P., The telomere bouquet regulates meiotic centromere assembly, Nat. Cell. Biol., 2015, vol. 17, pp. 458–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kordyukova, M., Olovnikov, I., and Kalmykova, A., Transposon control mechanisms in telomere biology, Curr. Opin. Genet. Dev., 2018, vol. 49, pp. 56–62.

    Article  CAS  PubMed  Google Scholar 

  43. Kubiak, M.R. and Makalowska, I., Protein-coding genes’ retrocopies and their functions, Viruses, 2017, vol. 9, art. ID E80.

    Article  PubMed  CAS  Google Scholar 

  44. Kulski, J.K., Anzai, T., and Inoko, H., ERVK9, transposons and the evolution of MHC class I duplicons within the alpha-block of the human and chimpanzee, Cytogenet. Genome Res., 2005, vol. 110, pp. 181–192.

    Article  CAS  PubMed  Google Scholar 

  45. Lauressergues, D., Couzigou, J.M., Clemente, H.S., et al., Primary transcripts of microRNAs encode regulatory peptides, Nature, 2015, vol. 520, no. 7545, pp. 90–93.

    Article  CAS  PubMed  Google Scholar 

  46. Lewis, K.A. and Wuttke, D.S., Telomerase and telomere-associated proteins: structural insights into mechanism and evolution, Structure, 2012, vol. 20, no. 1, pp. 28–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lieberman, P.M., Retrotransposon-derived p53 binding sites enhance telomere maintenance and genome protection, BioEssays, 2016, vol. 38, pp. 943–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Linardopoulou, E.V., Parghi, S.S., Friedman, C., et al., Human subtelomeric WASH genes encode a new subclass of the WASP family, PLoS Genet., 2007, vol. 3, p. e237.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lu, D., Davis, M.P., Abreu-Goodger, C., et al., MiR-25 regulates Wwp2 and Fbxw7 and promotes reprogramming of mouse fibroblast cells to iPSCs, PLoS One, 2012, vol. 7, no. 8, p. e40938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lv, S., Pan, L., and Wang, G., Commentary: primary transcripts of microRNAs encode regulatory peptides, Front. Plant Sci., 2016, vol. 7, p. 1436.

    PubMed  PubMed Central  Google Scholar 

  51. McGurk, M.P. and Barbash, D.A., Double insertion of transposable elements provides a substrate for the evolution of satellite DNA, Genome Res., 2018, vol. 28, no. 5, pp. 714–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Maeda, T., Horiuchi, T., and Makino, N., Epigenetic status of subtelomere of peripheral leukocytes corresponds to cardiographic parameters with a sex association, Geriatr. Gerontol. Int., 2018, vol. 18, pp. 1415–1419.

    Article  PubMed  Google Scholar 

  53. Mestrovic, N., Mravinac, B., Pavlek, M., et al., Structural and functional liaisons between transposable elements and satellite DNAs, Chromosome Res., 2015, vol. 23, no. 3, pp. 583–596.

    Article  CAS  PubMed  Google Scholar 

  54. Mueller, C., Aschacher, T., Wolf, B., and Bergmann, M., A role of LINE-1 in telomere regulation, Front. Biosci., 2018, vol. 23, pp. 1310–1319.

    Article  CAS  Google Scholar 

  55. Piqueret-Stephan, L., Ricoul, M., Hempel, W.M., and Sabatier, L., Replication timing of human telomeres is conserved during immortalization and influenced by respective subtelomeres, Sci. Rep., 2016, vol. 6, p. 32510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qu, G., Kaushal, P.S., Wang, J., et al., Structure of a group II intron in complex with its reverse transcriptase, Nat. Struct. Mol. Biol., 2016, vol. 23, no. 6, pp. 549–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Riethman, H., Ambrosini, A., and Paul, S., Human subtelomere structure and variation, Chromosome Res., 2005, vol. 13, pp. 505–515.

    Article  CAS  PubMed  Google Scholar 

  58. Rosen, M., Castillejo-Lopez, C., and Edstrom, J.E., Telomere terminating with centromere-specific repeats is closely associated with a transposon derived gene in Chronomus pallidivittatus,Chromosoma, 2002, vol. 110, no. 8, pp. 532–541.

    Article  CAS  PubMed  Google Scholar 

  59. Rubtsova, M., Narayking, Y., Vasilkova, D., et al., Protein encoded in human telomerase RNA is involved in cell protective pathways, Nucleic Acids Res., 2018, vol. 46, pp. 8966–8977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sarin, K.Y., Cheung, P., Gilison, D., et al., Conditional telomerase induction causes proliferation of hair follicle stem cells, Nature, 2005, vol. 436, no. 7053, pp. 1048–1052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sharma, A., Wolfgruber, T.K., and Presting, G.G., Tandem repeats derived from centromeric retrotransposons, BMC Genomics, 2013, vol. 14, p. 142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Slijepcevic, P., Mechanisms of the evolutionary chromosome plasticity: integrating the ‘centromere-from-telomere’ hypothesis with telomere length regulation, Cytogenet. Genome Res., 2016, vol. 148, pp. 268–278.

    Article  CAS  PubMed  Google Scholar 

  63. Szostak, J.W. and Blackburn, E.H., Cloning yeast telomeres on linear plasmid vectors, Cell, 1982, vol. 29, no. 1, pp. 245–255.

    Article  CAS  PubMed  Google Scholar 

  64. Tan, S., Cardoso-Moreira, M., Shi, W., et al., LTR-mediated retroposition as a mechanism of RNA-based duplication in metazoans, Genome Res., 2016, vol. 26, no. 12, pp. 1663–1675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tutton, S., Azzam, G.A., Stong, N., et al., Subtelomeric p53 binding prevents accumulation of DNA damage at human telomeres, EMBO J., 2016, vol. 35, pp. 193–207.

    Article  CAS  PubMed  Google Scholar 

  66. Villasante, A., Abad, J.P., and Mendez-Logo, M., Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, pp. 10 542–10 547.

    Article  CAS  Google Scholar 

  67. Volff, J.N., Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes, BioEssays, 2006, vol. 28, pp. 913–922.

    Article  CAS  PubMed  Google Scholar 

  68. Xiong, W., Dooner, H.K., and Du, C., Rolling-circle amplification of centromeric Helitrons in plant genomes, The Plant. J., 2016, vol. 88, pp. 1038–1045.

    Article  CAS  PubMed  Google Scholar 

  69. Zhong, C.X., Marshall, J.B., Topp, C., et al., Centromeric retroelements and satellites interact with maize kinetochore protein CENH3, Plant Cell, 2002, vol. 14, no. 11, pp. 2825–2836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Mustafin.

Ethics declarations

Conflict of interest. The author declares that there is no conflict of interest.

Statement on animal welfare. This article does not contain any studies involving animals performed by any of the authors.

Statement of compliance with standards of research involving humans as subjects. This article does not contain any studies involving humans as subjects of research.

Additional information

Translated by D. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafin, R.N. Interrelation of Telomeres with Transposable Elements in Aging. Adv Gerontol 10, 101–108 (2020). https://doi.org/10.1134/S2079057020020113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057020020113

Keywords:

Navigation