Skip to main content
Log in

Methods of improving the accuracy of fiber-optic gyros

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper considers the key problems, which limit the accuracy of fiber-optic gyros, and presents the methods to solve them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pavlath, G.A., Closed-loop Fiber Optic Gyros, Proc. SPIE, 1996. vol. 2837, pp. 46–60.

    Article  Google Scholar 

  2. Wysocki, P.F., Digonnet, M.J.F., Kim, B.Y., and Shaw H.J., Characteristics of Erbium-Doped Superfluorescent Fiber Sources for Interferometric Sensor Applications, J. Light-wave Technology, 1994. vol. LT-12, no. 1, ep. 550–567.

    Article  Google Scholar 

  3. Burns, W. K., Chin-Lin, Ch., and Moeller, R., Fiber-Optic Gyroscopes with Broad-Band Sources, J. Light-wave Technology, 1983, vol. LT-1, no. 1, ep. 98–105.

    Article  Google Scholar 

  4. Song, N., Zhang, Ch., and Du, X., Analysis of Vibration Error in Fiber Optic Gyroscope, Proc. SPIE, 2002, vol. 4920, pp. 115–121.

    Article  Google Scholar 

  5. Noda, J., Okamoto, K., and Sasaki, Y., Polarization-Maintaining Fibers and Their Applications, J. Light-wave Technology, 1986, vol. LT-4, no. 8, ep. 1071–1089.

    Article  Google Scholar 

  6. Kurbatov, A.M. and Kurbatov, R.A., New Optical W-Fiber Panda for Fiber Optic Gyroscope Sensitive Coil, Technical Physics Letters, 2010, vol. 36, no. 9, pp. 789–791.

    Article  Google Scholar 

  7. Dangui, V., Kim. H., Digonnet, M., and Kino, G., Phase Sensitivity to Temperature of the Fundamental Mode in Air-Guiding Photonic-Bandgap Fibers, Optics Express, 2005, vol. 13, no. 18, pp. 6669–6684.

    Article  Google Scholar 

  8. Andronova, I.A. and Malykin, G.B., Physical Issues of Sagnac Fiber Optics, Uspekhi Fizicheskikh Nauk, 2002, vol. 172, no. 8, pp. 849–873.

    Article  Google Scholar 

  9. Kurbatov, A.M., Single-Mode Optic Fiber for Polarizing Mode Filter, RF Patent 2040493, 1995.

  10. Kurbatov, A.M. and Kurbatov, R.A., Fiber Polarizer Based on W-Lightguide Panda, Technical Physics Letters, 2011, vol. 37, no. 7, pp. 626–629.

    Article  Google Scholar 

  11. Kurbatov, A.M. and Kurbatov, R.A., Suppression of Polarization Errors in Fiber Ring Interferometer by Polarizing Fibers, Technical Physics Letters, 2011, vol. 37, no. 5, pp. 397–400.

    Article  Google Scholar 

  12. Tomashuk, A.L., Golant, K.M., and Zabezhailov, M.O., Development of Optic Fibers for Application under Increased Readiation, Volokonno-Opticheskie Tekhnologii, Materialy i Ustroistva, 2001, no. 4, pp. 52–65.

  13. Girard, S., Keurinck, J., Boukenter, A., Meunier, J.-P., Ouerdane, Y., Azas, B., Charre, P., and Vié, M., Gamma-Rays and Pulsed X-Ray Radiation Responses of Nitrogen-, Germanium-Doped and Pure Silica-Core Optical Fibers, Nucl. Instr. and Methods of Physics Research B, 2004, no. 215, pp. 187–195.

  14. Dianov, E.M, Golant K.M., Khrapko, R.R., Mashinsky, V.M., Neustruev, V.B., Guryanov, A.N., Gusovsky, D.D., Miroshnichenko, S.I., and Sazhin, O.D., Radiation Resistance of Optical Fibers with Fluorine-Doped Silica Cladding, Proc. SPIE, 1994, vol. 2425, pp. 58–62.

    Article  Google Scholar 

  15. Mohr, F., Thermooptically Induced Bias Drift in Fiber Optical Sagnac Interferometers, J. Lightwave Technology, 1996, vol. LT-14, no. 1, pp. 27–41.

    Article  MathSciNet  Google Scholar 

  16. Frigo, N.J., Compensation of Linear Sources of Non-reciprocity in Sagnac Interferometers, Proc. SPIE. 1983, vol. 412, pp. 268–271.

    Google Scholar 

  17. Malvern, A., Optical Fiber Gyroscope Sensing Coil Having a Reduced Sensitivity to Temperature Variations Occurring Therein, US Patent 5 465 150, 1995.

  18. Sawyer, J., Ruffin, P., and Sung, C., Investigation of the Effects of Temporal Thermal Gradients in Fiber Optic Gyroscope Sensing Coils, Part 2, Opt. Eng., 1997, vol. 36, p. 29.

  19. Lykov, A.V., Teoriya Teploprovodnosti (Theory of Thermal Conductivity), Moscow: Vysshaya Shkola, 1967.

    Google Scholar 

  20. Kurbatov, A.M., A Method of Winding the Sensing Coil of Fiber Optic Gyro, RF Patent 2295112, 2007.

  21. Cordova, A., and Surabian, G., Potted Fiber Optic Gyro Sensor Coil for Stringent Vibration and Thermal Environments, US Patent 5 546 482, 1996.

  22. Lefevre, H.C., Fundamentals of Interferometric Fiber Optic Gyroscope, Proc. SPIE, 1996, vol. 2837, pp. 2–16.

    Article  Google Scholar 

  23. Chung, J.-Ch., Interferometric Fiber Optic Gyroscope Dead Band Suppression, Applied Physics Express, 2008. no. 7, p. 072501–1.

  24. Sanders, D., Dankwort, R., Strandjort, L., and Bergh, R., Fiber Optic Gyroscope with Dead Band Error Reduction, US Patent 5 999 304, 1999.

  25. Kurbatov, À.Ì., Method of Sagnac Phase Difference Compensation in Ring Interferometer of Fiber Optic Gyro, RF Patent 2146807, 1998.

  26. Pavlath, G.A., Method for Reducing Random Walk in Fiber Optic Gyroscopes, US Patent 5 530 545, 1996.

  27. Kurbatov, A.M., Method of Data Processing in Fiber Optic Gyro, RF Patent 2160886, 1999.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurbatov, A.M., Kurbatov, R.A. Methods of improving the accuracy of fiber-optic gyros. Gyroscopy Navig. 3, 132–143 (2012). https://doi.org/10.1134/S2075108712020071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108712020071

Keywords

Navigation