Skip to main content
Log in

Development of catalysts based on pentasil-type zeolites for selective synthesis of lower olefins from methanol and dimethyl ether

  • Catalysis in Chemical and Petrochemical Industry
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Using an integrated physicochemical approach to the study of zeolites and catalysts, scientific foundations for the targeted synthesis of catalysts based on ZSM-5 type zeolites for selective production of lower olefins from methanol and dimethyl ether have been developed. The selective synthesis of the C2= and C3= olefins takes place on medium-strength acid sites. The domination of strong acid sites increases the extent of the secondary oligomerization, aromatization, and cracking reactions and intensifies the deactivation of the catalyst. The effects of reaction conditions (feed partial pressure and temperature) on the outcomes of the process have been investigated. High-efficiency Zn-containing catalysts based on modified pentasils and promoted with magnesium and phosphorus have been developed for C2=–C4= olefin synthesis. These catalysts compare well with the industrial catalyst used in the Lurgi process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keil, F.J., Microporous Mesoporous Mater., 1999, vol. 29, p. 49.

    Article  CAS  Google Scholar 

  2. Kömpel, H., Liebner, W., and Wagner, M., Gastech 2005, Bilbao, Spain, 2005.

  3. Wurzel, T., “Synthesis Gas Chemistry,” DGMK/SCI-Conf., Dresden, 2006, p. 9.

  4. Abramova, A.V., Kulumbegov, R.V., Goryainova, T.I., and Khadzhiev, S.N., Neftekhimiya, 2008, vol. 48, no. 1, p. 16 [Pet. Chem. (Engl. Transl.), vol. 48, no. 1, p. 15].

    CAS  Google Scholar 

  5. Yushchenko, V.V., Zh. Fiz. Khim., 1997, vol. 71, no. 4, p. 628 [Russ. J. Phys, Chem. (Engl. Transl.), vol. 71, no. 4, p. 547].

    CAS  Google Scholar 

  6. Stoecker, M., Microporous Mesoporous Mater., 1999, vol. 29, p. 3.

    Article  Google Scholar 

  7. Anderson, M.W., Barrie, P.J., and Klinowski, J., J. Phys. Chem., 1991, vol. 95, p. 235.

    Article  CAS  Google Scholar 

  8. Park, T.Y. and Froment, G.F., Ind. Eng. Chem. Res., 2001, vol. 40, p. 4172.

    Article  CAS  Google Scholar 

  9. Chen, N.Y. and Reagan, W.J., J. Catal., 1979, vol. 59, p. 123.

    Article  CAS  Google Scholar 

  10. Forester, T.R. and Howe, R.F., J. Am. Chem. Soc., 1987, vol. 109, p. 5076.

    Article  CAS  Google Scholar 

  11. Ono, Y. and Mori, T., J. Chem. Soc., Faraday Trans., 1981, vol. 77, p. 2209.

    Article  CAS  Google Scholar 

  12. Kubelkova, L., Novakova, J., and Jiru, P., in Structure and Reactivity of Modified Zeolites, Amsterdam: Elsevier, 1984, p. 217.

    Book  Google Scholar 

  13. Novakova, J., Kubelkova, L., and Dolejsek, Z., J. Catal., 1986, vol. 97, p. 277.

    Article  CAS  Google Scholar 

  14. Olah, G.A., Pure Appl. Chem., 1981, vol. 53, p. 201.

    Article  CAS  Google Scholar 

  15. Berg, J.P., Wolthuizen, J.P., and van Hooff, J.H.C., Proc. 5th Int. Zeolite Conf., Naples, 1980, p. 649.

  16. Froment, G.F., Dehertog, W.J.H., and Marchi, A.J., Catalysis, 1992, vol. 9, p. 1.

    Article  CAS  Google Scholar 

  17. Olah, G.A., Doggweiler, H., et al., J. Am. Chem. Soc., 1984, vol. 106, p. 2143.

    Article  CAS  Google Scholar 

  18. Scherzer, J. and Ritter, R.E., Ind. Eng. Chem. Prod. Res. Dev., 1978, vol. 17, no. 3, p. 219.

    Article  CAS  Google Scholar 

  19. Hartford, R.W., Kojima, M., and O’Connor, C.T., Ind. Eng. Chem. Res., 1989, vol. 28, p. 1748.

    Article  CAS  Google Scholar 

  20. Gaare, K. and Akporiaye, D., J. Mol. Catal. A: Chem., 1996, vol. 109, p. 177.

    Article  CAS  Google Scholar 

  21. Lee, E.F.T. and Rees, L.V.C., Zeolites, 1987, vol. 7, p. 545.

    Article  CAS  Google Scholar 

  22. Lee, E.F.T. and Rees, L.V.C., Zeolites, 1987, vol. 7, p. 143.

    Article  CAS  Google Scholar 

  23. Li, Y.G., Xie, W.H., and Yong, S., Appl. Catal., A, 1997, vol. 150, p. 231.

    Article  CAS  Google Scholar 

  24. Yakerson, V.I., Vasina, T.V., et al., Catal. Lett., 1989, vol. 3, p. 339.

    Article  CAS  Google Scholar 

  25. El-Malki, El-M., van Santen, R.A., and Sachtler, W.M.H., J. Phys. Chem. B, 1999, vol. 103, p. 4611.

    Article  CAS  Google Scholar 

  26. Berndt, H., Lietz, G., and Völter, J., Appl. Catal., A, 1996, vol. 146, p. 365.

    Article  CAS  Google Scholar 

  27. Biscardi, J.A., Meitzner, G.D., and Iglesia, E., J. Catal., 1998, vol. 179, p. 192.

    Article  CAS  Google Scholar 

  28. Caro, J., Buelow, M., et al., J. Catal., 1990, vol. 124, no. 2, p. 367.

    Article  CAS  Google Scholar 

  29. Abramova, A.V., Slivinsky, E.V., et al., Stud. Surf. Sci. Catal., 2000, vol. 128, p. 515.

    Article  CAS  Google Scholar 

  30. Abramova, A.V., Slivinskii, E.V., et al., Neftekhimiya, 2000, vol. 40, no. 3, p. 181 [Pet. Chem. (Engl. Transl.), vol. 40, no. 3, p. 158].

    CAS  Google Scholar 

  31. Diaz-Mendoza, F.A., Pernett-Bolano, L., and Cardona-Martinez, N., Thermochim. Acta, 1998, vol. 312, p. 47.

    Article  CAS  Google Scholar 

  32. Schneider, M., Schmidt, F., Burgfels, G., Buchhold, H., and Möller F.-W., Eur. Patent 0448000A1 EP, 1991.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Abramova, 2009, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramova, A.V. Development of catalysts based on pentasil-type zeolites for selective synthesis of lower olefins from methanol and dimethyl ether. Catal. Ind. 1, 267–277 (2009). https://doi.org/10.1134/S2070050409040023

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050409040023

Keywords

Navigation