Skip to main content
Log in

Number theory as the ultimate physical theory

  • Research Articles
  • Published:
P-Adic Numbers, Ultrametric Analysis, and Applications Aims and scope Submit manuscript

Abstract

At the Planck scale doubt is cast on the usual notion of space-time and one cannot think about elementary particles. Thus, the fundamental entities of which we consider our Universe to be composed cannot be particles, fields or strings. In this paper the numbers are considered as the fundamental entities. We discuss the construction of the corresponding physical theory. A hypothesis on the quantum fluctuations of the number field is advanced for discussion. If these fluctuations actually take place then instead of the usual quantum mechanics over the complex number field a new quantum mechanics over an arbitrary field must be developed. Moreover, it is tempting to speculate that a principle of invariance of the fundamental physical laws under a change of the number field does hold. The fluctuations of the number field could appear on the Planck length, in particular in the gravitational collapse or near the cosmological singularity. These fluctuations can lead to the appearance of domains with non-Archimedean p-adic or finite geometry. We present a short review of the p-adic mathematics necessary, in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory (CUP, Cambridge, UK 1987); I. Ya. Arefeva and I. V. Volovich, Usp. Fiz. Nauk 146, 655 (1985).

    MATH  Google Scholar 

  2. C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation (Freeman, San Francisco 1973); J. A. Wheeler, in Quantum Theory and Gravitation, ed. A. R. Marlow (Academic Press, 1980).

    Google Scholar 

  3. I. V. Volovich, “p-Adic string”, Class. Quan. Grav. (1987), to be published; Teor. Mat. Fiz. 71, 337 (1987).

    MathSciNet  Google Scholar 

  4. V. S. Vladimirov and I. V. Volovich, Teor. Mat. Fiz. 59, 3 (1983).

    MathSciNet  Google Scholar 

  5. J. A. Wheeler, Ann. Phys. 2, 604 (1957); T. Regge, Nuovo Cimento 7, 215 (1958); A. Peres and N. Rosen, Phys. Rev. 118, 335 (1960); B. De Witt, “The quantization of geometry,” in Gravitation: an Introduction to Current Research, ed. L. Witten (John Wiley and Sons, New York and London 1962); M. A. Markov, Progr. Theor. Phys. Suppl. 85 (1965); H.-J. Treder, in Relativity, Quanta and Cosmology, ed. F. de Finis (New York, 1979).

    Article  MATH  Google Scholar 

  6. G.’ t Hooft, Nucl. Phys. B 256, 727 (1985); “Gravitational Collapse and Quantum Mechanics”, Lectures given at the 5th Adriatic Meeting on Particle Physics, Dubrovnik, June 16–28, 1986.

    Article  Google Scholar 

  7. N. Bohr and L. Rosenfeld, Kgl. Danske Videnskab Selskab Mat.-fis. Medd. 12, 1 (1933); Phys. Rev. 78, 794 (1950).

    Google Scholar 

  8. H. Poincare, La Science et I’Hypothese (Flammarion, Paris, 1923).

    Google Scholar 

  9. H. Weyl, Philosophy of Mathematics and Natural Science (Princeton Univ. Press, 1949).

  10. D. Hilbert, Grundlagen der Geometrie (Leipzig, 1930).

  11. A Passion for Physics. Essays in honour of Geoffrey Chew, including an interview with Chew, eds. C. de Tar, J. Finkelstein and Chung-1 Tan (World Scientific, 1985).

  12. I. Ya. Arefeva and V. Korepin, Pis’ma Zh. Eksp. Teor. Fiz. 20, 680 (1974).

    Google Scholar 

  13. R. J. Eden, P. V. Landshoff, D. I. Olive and J. C. Polkinghorne, The Analytic S Matrix (Cambridge Univ. Press, 1966); G. F. Chew, The Analytic S Matrix (Benjamin, New York, 1966); N. N. Bogolyubov, A. A. Logunov and I. Todorov, Introduction to Axiomatic Quantum Field Theory (Reading, MA, Benjamin, 1975).

  14. M. Jacob, ed. Dual Theory, Phys. Rep. Reprint 1 (North Holland, Amsterdam, 1974).

  15. J. A. Wheeler, Geometrodynamics (Academic Press, New York and London 1962); S. W. Hawking, Nucl. Phys. B 144, 349 (1978).

    MATH  Google Scholar 

  16. T. D. Lee, Phys. Lett. B 122, 217 (1983).

    Article  Google Scholar 

  17. M. B. Green, QMC Preprints:QMC-87-10, QMC-87-11 (1987).

  18. H. J. de Vega and N. Sanchez, CERN Preprint TH. 4681 (1987); N. Sanchez, CERN Preprint TH. 4733 (1987).

  19. G. Veneziano, CERN Preprint TH. 4397 (1986).

  20. C. J. Isham, in Quantum Gravity 2, eds. C. J. Isham, R. Penrose and D. W. Sciama (Clarendon Press, Oxford, 1981).

    Google Scholar 

  21. A. Casher, CERN Preprint TH. 4738 (1987).

  22. D. Friedan and S. Shenker, Nucl. Phys. B 281, 509 (1987).

    Article  MathSciNet  Google Scholar 

  23. M. J. Bewick and S. G. Rajeev, MIT Preprint CTP-1414 (1986).

  24. B. Riemann, Nachrichten K. Gesellschaft Wiss. Gottingen 13, 133 (1868).

    Google Scholar 

  25. B. Gross and N. Koblitz, Ann. Math. 109, 569 (1979).

    Article  MathSciNet  Google Scholar 

  26. Z. I. Borevich and I. R. Shafarevich, Number Theory (Academic Press, 1966); J.-P. Serre, A Course in Arithmetic (Springer-Verlag, 1973); S. Lang, Algebra (Addison-Wesley, 1965).

  27. W. H. Schikhof, “Non-Archimedean monotone functions,” Report 7916 (Mathematisch Instituut, Nijmegen, The Netherlands, 1979).

    Google Scholar 

  28. R. Penrose, in Quantum Gravity 2, eds. C. J. Isham, R. Penrose and D. W. Sciama (Clarendon Press, Oxford, 1981).

    Google Scholar 

  29. S. W. Hawking, “Quantum Cosmology,” in 300 Years of Gravity (Cambridge Univ. Press, 1986).

  30. K. Mahler, Introduction to p-Adic Numbers and Their Functions (Cambridge Univ. Press, 1973); N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions (Springer Verlag, 1984); N. Koblitz, p-Adic Analysis: a Short Course on Recent Work (Cambridge Univ. Press, 1980); W. H. Schikhof, Ultrametric Calculus (Cambridge Univ. Press, 1984); S. Lang, Cyclotomic Fields (Springer Verlag, I and II, 1980).

  31. B. Dwork, Lectures on p-Adic Differential Equations (Springer Verlag, 1982).

  32. B. A. Dubrovin, I. M. Krichever and S. P. Novikov, Soviet Sci. Rev. 3, 1 (1982); M. Mulase, J. Diff. Geom. 19, 403 (1984); T. Shiota, Inv. Math. 83, 333 (1986).

    Google Scholar 

  33. Y. Morita, J. Fac. Sci. Univ. Tokyo, Sec. lA 22, 255 (1975).

    MATH  Google Scholar 

  34. C. Lovelace, Phys. Lett. B 32, 703 (1970); V. Alessandrini and D. Amati, Nuovo Cimento 4A, 793 (1971).

    Article  MathSciNet  Google Scholar 

  35. L. Alvarez-Gaume and P. Nelson, CERN Preprint TH. 4615 (1986).

  36. L. Gerritzen and M. van der Put, Schottky Groups and Mumford Curves, Lecture Notes Math. 817 (Springer, 1980).

  37. Yu. Manin and V. G. Drinfeld, J. Reine Angew. Math. 262/263, 239 (1973).

    MathSciNet  Google Scholar 

  38. S. Saito, Tokyo Metropolitan Univ. Preprint TMUP-HEL-8613 (1986); TMUP-HEL-8615 (1986); TMUP-HEL-8701 (1987); N. Ishibashi, Y. Matsuo and H. Ooguri, Univ. Tokyo Preprint UT-499 (1986); K. Sogo, Inst. Nucl. Study, Univ. Tokyo Preprint INS-Rep-626 (1987).

  39. L. Alvarez-Gaume, C. Gomez and C. Reina, CERN Preprint TH. 4641 (1987).

  40. M. Martellini and N. Sanchez, CERN Preprint TH. 4680 (1987).

  41. A. Neveu and P. West, CERN Preprints TH. 4697 and 4707 (1987).

  42. A. D. Linde, Rep. Prog. Phys. 47, 925 (1984); L. P. Grischuk and Ya. B. Zeldovich, Preprint Inst. Space Res. 176, Moscow (1982).

    Article  MathSciNet  Google Scholar 

  43. A. D. Sakharov, Zh. Eks. Teor. Fiz. 87, 375 (1984); I. Ya. Aref’eva and I. V. Volovich, Phys. Lett. B 164, 287 (1985); Nucl. Phys. B 274, 619 (1986); I. Ya. Aref’eva, B. G. Dragovic and I. V. Volovich, Phys. Lett. B 177, 357 (1986); M. Pollock, Phys. Lett. B 174, 251 (1986); A. Popov, “Chiral fermions in D = 11 supergravity”, Teor. Mat. Fiz., to be published.

    Google Scholar 

  44. I. M. Gelfand, M. I. Graev and I. I. Pjatetski-Shapiro, Theory of Representations and Automorphic Functions (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  45. P. A. M. Dirac, in Mathematical Foundations of Quantum Theory, ed. A. R. Marlou (Academic Press, 1978).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor V. Volovich.

Additional information

The text was submitted by the author in English.

This paper is the first publication of the preprint with the same title, CERN-TH.4781/87, Geneva, July 1987.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volovich, I.V. Number theory as the ultimate physical theory. P-Adic Num Ultrametr Anal Appl 2, 77–87 (2010). https://doi.org/10.1134/S2070046610010061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046610010061

Navigation