Skip to main content
Log in

Acute toxicity analysis of polyelectrolyte microcapsules with zinc oxide nanoparticles and microcapsule shell components using aquatic organisms

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Nanocomposite microcapsules with zinc oxide nanoparticles in their shells were fabricated using layer-by-layer assembly. An investigation of the toxic effect of microcapsules and their constituent components was performed for four types of test objects (ceriodaphnids (Ceriodaphnia affinis Lilljeborg), the Ekolyum biosensor (a culture of fluorescent genetically engineered Escherichia coli M-17 bacteria), midge larvae (Chironomus riparius Meigen), and aquarium fish (Brachydanio rerio)). It was established that, for each test object, the poly(allylamine hydrochloride) solution (PAH) used as a constituent component for the microcapsule shell formation has the maximal toxicity. The poly(sodium styrene sulfonate) solution (PSS) and a sample of microcapsules with a shell structure of (PAH/PSS)2(ZnO/PSS)3(PAH/PSS) have the least toxicity among the tested samples. At the same time, a significant decrease in the acute toxicity effect for the suspension of the microcapsules in comparison with their constituent components was detected. In the future, our results can be used in the development of a complex methodology for determining the toxicity parameters of a microcapsule, as well as the polyelectrolytes and inorganic nanoparticle colloids used as the initial material for the fabrication of nanocomposite microcontainers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. A. Ozin, A. C. Arsenault, and L. Cademartiri, Nanochemistry: A Chemical Approach to Nanomaterials (RSC Publishing, Cambridge, 2009).

    Google Scholar 

  2. N. G. Khlebtsov and L. A. Dykman, “Optical Properties and Biomedical Applications of Plasmonic Nanoparticles,” J. Quant. Spectrosc. Radiat. Transfer 111, 1–35 (2010).

    Article  CAS  Google Scholar 

  3. L. A. Dykman, V. A. Bogatyrev, S. Yu. Shchegolev, and N. G. Khlebtsov, Gold Nanoparticles: Synthesis, Properties, and Biomedical Applications (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  4. D. R. Picot and S. B. Ross-Murphy, Polymer Gels and Networks, Ed. by Y. Osada Y. and A. R. Khokhlov (Marcel Dekker, New York, 2002).

    Google Scholar 

  5. A. A. Askadskii and A. R. Khokhlov, Introduction to Physico-Chemistry of Polymers (Nauchnyi Mir, Moscow, 2009) [in Russian].

    Google Scholar 

  6. M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging Applications of Stimuli-Responsive Polymer Materials,” Nat. Mater. 9, 101–113 (2010).

    Article  Google Scholar 

  7. E. Donath, G. B. Sukhorukov, F. Caruso, S. A. Davis, and H. Möhwald, “Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes,” Angew. Chem., Int. Ed. 37, 2201–2205 (1998).

    Article  Google Scholar 

  8. S. A. Portnov, O. A. Inozemtseva, D. A. Gorin, and T. A. Kolesnikova, “Formation and Physicochemical Properties of Polyelectrolytic Nanocomposite Microcapsules,” Ross. Nanotekhnol. 2(9–10), 68–80 (2007).

    Google Scholar 

  9. G. B. Sukhorukov, A. Fery, M. Brumen, and H. Möhwald, “Physical Chemistry of Encapsulation and Release,” Phys. Chem. Chem. Phys. 6, 4078–4089 (2004).

    Article  CAS  Google Scholar 

  10. M. F. Bédard, A. Muñz-Javier, R. Mueller, P. del Pino, A. Fery, W. J. Parak, A. G. Skirtach, and G. B. Sukhorukov, “On the Mechanical Stability of Polymeric Microcontainers Functionalized with Nanoparticles,” Soft Matter 5, 148–155 (2009).

    Article  Google Scholar 

  11. T. A. Kolesnikova, D. A. Gorin, P. Fernandes, S. Kessel, G. B. Khomutov, A. Fery, D. G. Shchukin, and H. Möhwald, “Nanocomposite Microcontainers with High Ultrasound Sensitivity,” Adv. Funct. Mater. 20, 1189–1195 (2010).

    Article  CAS  Google Scholar 

  12. S. E. Cross, B. Innes, M. S. Roberts, T. Tsuzuki, T. A. Robertson, and P. McCormick, “Human Skin Penetration of Sunscreen Nanoparticles: In-Vitro Assessment of a Novel Micronized Zinc Oxide Formulation,” Skin Pharmacol. Physiol. 20, 148–154 (2007).

    Article  CAS  Google Scholar 

  13. N. Lü, X. Lü, X. Jin, and C. Lü, “Preparation and Characterization of UV-Curable ZnO/Polymer Nanocomposite Films,” Polym. Int. 56, 138–143 (2007).

    Article  Google Scholar 

  14. S. C. Tjong and G. D. Liang, “Electrical Properties of Low-Density Polyethylene/ZnO Nanocomposites,” Mater. Chem. Phys. 100, 1–5 (2006).

    Article  CAS  Google Scholar 

  15. D. Yeom, K. Keem, J. Kang, D.-Y. Jeong, C. Yoon, D. Kim, and S. Kim, “NOT and NAND Logic Circuits Composed of Top-Gate ZnO Nanowire Field-Effect Transistors with High-k Al2O3 Gate Layers,” Nanotechnology 19, 265 202 (2008).

    Google Scholar 

  16. M.-H. Zhao, Z.-L. Wang, and S. X. Mao, “Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope,” Nano Lett. 4(4), 587–590 (2004).

    Article  CAS  Google Scholar 

  17. M. Wang, Y. Lian, and X. Wang, “PPV/PVA/ZnO Nanocomposite Prepared by Complex Precursor Method and Its Photovoltaic Application,” Curr. Appl. Phys. 9, 189–194 (2009).

    Article  Google Scholar 

  18. G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, B. N. Khlebtsov, B. Ya. Kogan, G. G. Akchurin, A. V. Shantrocha, I. L. Maksimova, N. G. Khlebtsov, and V. V. Tuchin, “Circulation and Distribution of Gold Nanoparticles and Induced Alterations of Tissue Morphology at Intravenous Particle Delivery,” J. Biophoton. 2(5), 292–302 (2009).

    Article  CAS  Google Scholar 

  19. W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, “Nanoparticle-Mediated Cellular Response Is Size-Dependent,” Nat. Nanotechnol. 3, 145–150 (2008).

    Article  CAS  Google Scholar 

  20. C. Hanley, J. Layne, A. Punnoose, K. M. Reddy, I. Coombs, A. Coombs, K. Feris, and D. Wingett, “Preferential Killing of Cancer Cells and Activated Human T Cells Using ZnO Nanoparticles,” Nanotechnology 19, 295 103 (2008).

    Article  Google Scholar 

  21. K. M. Reddy, K. Feris, J. Bell, D. Wingett, C. Hanley, and A. Punnoose, “Selective Toxicity of Zinc Oxide Nanoparticles to Prokaryotic and Eukaryotic Systems,” Appl. Phys. Lett. 90, 213 902-1–213 902-3 (2007).

    Google Scholar 

  22. R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M. F. Benedetti, and F. Fievet, “Toxicological Impact Studies Based on Escherichia coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium,” Nano Lett. 6(4), 866–870 (2006).

    Article  CAS  Google Scholar 

  23. M. Semmling, O. Kreft, A. Muñoz-Javier, G. B. Sukhorukov, J. Käs, and W. J. Parak, “A Novel Flow-Cytometry-Based Assay for Cellular Uptake Studies of Polyelectrolyte Microcapsules,” Small 4(10), 1763–1768 (2008).

    Article  CAS  Google Scholar 

  24. S. Faraasen, J. Vörös, G. Csúcs, M. Textor, H. P. Merkle, and E. Walter, “Ligand-Specific Targeting of Microspheres to Phagocytes by Surface Modification with Poly(L-Lysine)-Grafted Poly(Ethylene Glycol) Conju gate,” Pharm. Res. 20(2), 235–243 (2003).

    Article  Google Scholar 

  25. A. Muñoz-Javier, O. Kreft, M. Semmling, S. Kempter, A. G. Skirtach, O. T. Bruns, P. del Pino, M. F. Bedard, J. Radler, J. Käs, C. Plank, G. B. Sukhorukov, and W. J. Parak, “Uptake of Colloidal Polyelectrolyte-Coated Particles and Polyelectrolyte Multilayer Capsules by Living Cells,” Adv. Mater. (Weinheim) 20, 4281–4287 (2008).

    Article  Google Scholar 

  26. J. A. Champion and S. Mitragotri, “Role of Target Geometry in Phagocytosis,” Proc. Natl. Acad. Sci. USA 103, 4930–4934 (2006).

    Article  CAS  Google Scholar 

  27. U. Wattendorf, O. Kreft, M. Textor, G. B. Sukhorukov, and H. P. Merkle, “Stable Stealth Function for Hollow Polyelectrolyte Microcapsules through a Poly(Ethylene Glycol) Grafted Polyelectrolyte Adlayer,” Biomacromolecules 9, 100–108 (2008).

    Article  CAS  Google Scholar 

  28. B. G. De Geest, R. E. Vandenbroucke, A. M. Guenther, G. B. Sukhorukov, W. E. Hennink, N. N. Sanders, J. Demeester, and S. C. De Smedt, “Intracellularly Degradable Polyelectrolyte Microcapsules,” Adv. Mater. (Weinheim) 18(8), 1005–1009 (2006).

    Article  Google Scholar 

  29. N. M. Franklin, N. J. Rogers, S. C. Apte, G. E. Batley, G. E. Gadd, and P. S. Casey, “Comparative Toxicity of Nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a Freshwater Microalga (Pseudokirchneriella subcapitata): The Importance of Particle Solubility,” Environ. Sci. Technol. 41(24), 8484–8490 (2007).

    Article  CAS  Google Scholar 

  30. D. Lin and B. Xing, “Root Uptake and Phytotoxicity of ZnO Nanoparticles,” Environ. Sci. Technol. 42(15), 5580–5585 (2008).

    Article  CAS  Google Scholar 

  31. R. Brayner, S. A. Dahoumane, C. Yéprémian, C. Djediat, M. Meyer, A. Couté, and F. Fiévet, “ZnO Nanoparticles: Synthesis, Characterization, and Ecotoxicological Studies,” Langmuir 26(9), 6522–6528 (2010).

    Article  CAS  Google Scholar 

  32. J. D. Fortner, D. Y. Lyon, C. M. Sayes, A. M. Boyd, J. C. Falkner, E. M. Hotze, L. B. Alemany, Y. J. Tao, W. Guo, K. D. Ausman, V. L. Colvin, and J. B. Hughes, “C60 in Water: Nanocrystal Formation and Microbial Response,” Environ. Sci. Technol. 39, 4307–4316 (2005).

    Article  CAS  Google Scholar 

  33. D. Y. Lyon, J. D. Fortner, C. M. Sayes, V. L. Colvin, and J. B. Hughes, “Bacterial Cell Association and Antimicrobial Activity of a C60 Water Suspension,” Environ. Toxicol. Chem. 24, 2757–2762 (2005).

    Article  CAS  Google Scholar 

  34. S. B. Lovern and R. Kapler, “Daphnia Magna Mortality When Exposed to Titanium Dioxide and Fullerene (C60) Nanoparticles,” Environ. Toxicol. Chem. 25, 1132–1137 (2006).

    Article  CAS  Google Scholar 

  35. E. Oberdörster, “Manufactured Nanomaterials (Fullerenes, C60) Induce Oxidative Stress in the Brain of Juvenile Largemouth Bass,” Environ. Health Perspect. 112 1058–1062 (2004).

    Article  Google Scholar 

  36. G. Andrievsky, V. Klochkov, and L. Derevyanchenko, “Is the C60 Fullerene Molecule Toxic?!” Fullerenes, Nanotubes, Carbon Nanostruct. 13, 363–376 (2005).

    Article  CAS  Google Scholar 

  37. L. B. Piotrovskii, “Fullerenes in the Design of Medicinal Preparations,” Ross. Nanotekhnol. 2(7–8), 6–16 (2007).

    Google Scholar 

  38. K. E. Biesinger, A. E. Lemke, W. E. Smith, and R. Tyo, “Comparative Toxicity of Polyelectrolytes to Selected Aquatic Animals,” J. Water Pollut. Control Fed. 48(1), 183–187 (1976).

    CAS  Google Scholar 

  39. K. E. Biesinger and G. N. Stokes, “Effects of Synthetic Polyelectrolytes on Selected Aquatic Organisms,” J. Water Pollut. Control Fed. 58(3), 207–213 (1986).

    CAS  Google Scholar 

  40. T. I. Moiseenko, “Ecotoxicological Approach to the Evaluation of the Quality of Water,” Vodn. Resur. 32(2), 184–195 (2005).

    Google Scholar 

  41. RD 52.24.635-2002. Methodological Instructive Regulations. Verification of Observations for the Assessment of the Level of Toxic Pollution of Bottom Sediments by Means of Biotesting. Methods for Toxicological Evaluation of the Pollution of Freshwater Ecosystems (Rosgidromet, Moscow, 2002) [in Russian].

  42. Yu. V. Novikov, K. S. Lastochkina, and Z. N. Boldina, Methods of Investigation the Quality of Reservoir Water (Meditsina, Moscow, 1990) [in Russian].

    Google Scholar 

  43. Instruction on the Hydrobiological Monitoring of Freshwater Ecosystems (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].

  44. Treatise on the Methods of Hydrobiological Analysis of Surface Waters and Bottom Sediments, Ed. by V. A. Abakumov (Gidrometeoizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  45. Technique for Determination of the Toxicity of Water and Aqueous Extracts from Soils, Sewage Sludges, and Waste against the Lethality Characteristics and Variations in the Fecundity of Ceriodaphni. Federal Requirements of Current Environmental Regulations (Toxicological Methods of Control) PND F T 14.1:2:3:4.8-02; 16.1:2.3:3.5-02 (Ministry of Natural Resources of the Russian Federation, Moscow, 2002) [in Russian].

  46. Technique for Determination of the Toxicity of Water and Aqueous Extracts from Soils, Sewage Sludges, and Waste against the Variations in the Intensity of Bacterial Bioluminescence by the Test System “Ecolum.” Federal Requirements of Current Environmental Regulations (Toxicological Methods of Control) (PND F T) 14.1:2:3:4.11-04, Federal Requirements of Current Environmental Regulations (Toxicological Methods of Control) (PND F) 16.1:2.3:3.8-04 (Scientific Center Ecological Perspective, Perm, 2004) [in Russian].

  47. “Criteria for Assignment of Hazardous Waste Products to the Hazard Classes by Degree of Impact on the Environment,” Resolution of the Ministry of Natural Resources of the Russian Federation No. 511 (June 15, 2001).

  48. N. B. Il’inskaya and M. S. Iordan, “Technique for Determination of the Stage of Physiological Maturity of Chironomid Larvae of the Age IV from the Structure and Size of Embryonic Discs,” in Proceedings of the First (IX) Workshop of the Working Group on Project No. 18 “Species and Its Productivity in Area,” Vilnius, 1975, pp. 17–22.

  49. I. A. Fedorova, “Methodological Approaches to the Analysis of Toxicological and Cytogenetic Effects of Cholinotropic Preparations on Chironomus (Diptera) Larvae In Vivo Acute Experiment,” Biomed. Radioelektron., No. 12, 58–65 (2009).

  50. Evaluation of the Safety of Nano materials In Vitro and In Vivo Model Systems: Methodological Recommendations (MR 1.2.2566-09) (Federal Center of Hygiene and Epidemiology of Rospotrebnadzor, Moscow, 2009) [in Russian].

  51. A. V. Korosov and N. M. Kalinkina, Quantitative Methods of Ecological Toxicology (Petrozavodsk State University, Petrozavodsk, 2003) [in Russian].

    Google Scholar 

  52. G. T. Frumin, “Rapid Method for Determination of Effective and Lethal Doses (Concentrations),” Khim.-Farm. Zh., No. 6, 15–18 (1991).

  53. H. Selye, “The Concept of Stress as We Understand in 1976,” in New about Hormones and Mechanisms of Their Action (Naukova Dumka, Kiev, 1977), pp. 27–51 [in Russian].

    Google Scholar 

  54. B. G. De Geest, S. De Koker, G. B. Sukhorukov, O. Kreft, W. J. Parak, A. G. Skirtach, J. Demeester, S. C. De Smedt, and W. E. Hennink, “Polyelectrolyte Microcapsules for Biomedical Applications,” Soft Matter 5, 282–291 (2009).

    Article  Google Scholar 

  55. M. Bartneck, H. A. Keul, G. Zwadlo-Klarwasser, and J. Groll, “Phagocytosis Independent Extracellular Nanoparticle Clearance by Human Immune Cells,” Nano Lett. 10, 59–63 (2010).

    Article  CAS  Google Scholar 

  56. K. Köhler and G. B. Sukhorukov, “Heat Treatment of Polyelectrolyte Multilayer Capsules: A Versatile Method for Encapsulation,” Adv. Funct. Mater. 17(13), 2053–2061 (2007).

    Article  Google Scholar 

  57. Z. Tang, Y. Wang, P. Podsiadlo, and N. A. Kotov, “Biomedical Applications of Layer-By-Layer Assembly: From Biomimetics to Tissue Engineering” Adv. Mater. (Weinheim) 18, 3203–3224 (2006).

    Article  CAS  Google Scholar 

  58. A. S. Shcherbachenko, R. Sh. Al’myashev, I. A. Fedorova, and N. V. Polukonova, “Analysis for Toxicity of the Raw Extract of the Hybrid Species of Maize Zea mays L on Chironomids Chironomus plumosus and Fishes Danio rerio,” in Proceedings of the International Scientific and Practical Conference “Bekker Readings,” Volgograd State University, Volgograd, Russia, 2010 (Volgograd State University, Volgograd, 2010), pp. 25–30.

    Google Scholar 

  59. N. V. Polukonova, N. A. Durnova, S. V. Raikova, I. A. Fedorova, K. A. Razuvaeva, A. S. Shcherbachenko, and R. Sh. Al’myashev, “Analysis of the Chemical Composition and Biological Properties of the Alcoholic Extract of the Hybrid Species of Maize Zea mays L,” in Proceedings of the Fourth All-Russian Workshop with the International Participation of the Scientific and Methodological Conference “Farmobrazovanie 2010,” Voronezh, Russia, 2010, pp. 306–311.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Kolesnikova.

Additional information

Original Russian Text © T.A. Kolesnikova, I.A. Fedorova, A.A. Gusev, D.A. Gorin, 2011, published in Rossiiskie Nanotekhnologii, 2011, Vol. 6, Nos. 3–4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolesnikova, T.A., Fedorova, I.A., Gusev, A.A. et al. Acute toxicity analysis of polyelectrolyte microcapsules with zinc oxide nanoparticles and microcapsule shell components using aquatic organisms. Nanotechnol Russia 6, 244–255 (2011). https://doi.org/10.1134/S1995078011020108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078011020108

Keywords

Navigation