Skip to main content
Log in

N-Terminal Fragment of Vimentin Is Responsible for Binding of Mitochondria In Vitro

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The role of intermediate filaments in the regulation of mitochondrial functions has become evident from recent studies. For example, vimentin has been shown to affect mitochondrial motility and the level of their membrane potential. However, the mechanism of their interaction is still largely unexplored. In particular, it is unknown whether vimentin can bind directly to mitochondria or whether any intermediate proteins are needed. In this study, using bioinformatics tools, we show that the vimentin sequence has a region in the N-terminal domain, which can play the role of a mitochondrial targeting peptide that probably directs vimentin to mitochondria and causes its binding with these organelles. In order to test this possibility, the binding of mitochondria isolated from rat liver with protofilaments formed by human recombinant vimentin was investigated using centrifugation through sucrose “cushion”. We demonstrate that vimentin can bind to mitochondria in vitro. We also show that the action of a mitochondrial protease leads to the loss of the N-terminal part of the vimentin molecule and its interaction with mitochondria is disrupted. Inhibitory analysis revealed that the atypical calpain, a cysteine Ca2+-dependent protease that is insensitive to the inhibitor calpastatin, is responsible for its degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Minin A.A., Moldaver M.V. 2008. Vimentin intermediate filaments and their role in intracellular organelle distribution. Uspekhi Biol. Khimii. (Rus.). 48, 221–252.

  2. Schwarz N., Leube R.E. 2016. Intermediate filaments as organizers of cellular space: How they affect mitochondrial structure and function. Cells. 5 (3), 30.

    Article  Google Scholar 

  3. Wang N., Stamenovic D. 2000. Contribution of intermediate filaments to cell stiffness, stiffening, and growth. Am. J. Physiol. Cell Physiol. 279, 188–194.

    Article  Google Scholar 

  4. Styers M.L., Kowalczyk A.P., Faundez V. 2005. Intermediate filaments and vesicular membrane traffic: The odd couple’s first dance? Traffic. 6, 359–365.

    Article  CAS  Google Scholar 

  5. Ivaska J. 2011. Vimentin: Central hub in EMT induction? Small GTPases. 2, 51–53.

    Article  Google Scholar 

  6. Chernoivanenko I.S., Matveeva E.A., Gelfand V.I., Goldman R.D., Minin A.A. 2015. Mitochondrial membrane potential is regulated by vimentin intermediate filaments. FASEB J. 29 (3), 820–827.

    Article  CAS  Google Scholar 

  7. Perez-Olle R., Lopez-Toledano M.A., Goryunov D., Cabrera-Poch N., Stefanis L., Brown K., Liem R.K. 2005. Mutations in the neurofilament light gene linked to Charcot-Marie-Tooth disease cause defects in transport. J. Neurochem. 93, 861–874.

    Article  CAS  Google Scholar 

  8. Milner D. J., Mavroidis M., Weisleder N., Capetanaki Y. 2000. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J. Cell Biol. 150, 1283–1298.

    Article  CAS  Google Scholar 

  9. Kumemura H., Harada M., Yanagimoto C., Koga H., Kawaguchi T., Hanada, S., Taniguchi E., Ueno T., Sata M. 2008. Mutation in keratin 18 induces mitochondrial fragmentation in liver-derived epithelial cells. Biochem. Biophys. Res. Commun. 367, 33–40.

    Article  CAS  Google Scholar 

  10. Tolstonog G.V., Shoeman R.L., Traub U., Traub P. 2001. Role of the intermediate filament protein vimentin in delaying senescence and in the spontaneous immortalization of mouse embryo fibroblasts. DNA Cell Biol. 20, 509–529.

    Article  CAS  Google Scholar 

  11. Nicholls D.G., Budd S.L. 2000. Mitochondria and neuronal survival. Physiol. Rev. 80, 315–360.

    Article  CAS  Google Scholar 

  12. Pathak T., Trebak M. 2018. Mitochondrial Ca2+ signaling. Pharmacol. Ther. 192, 112–123.

    Article  CAS  Google Scholar 

  13. Burke P.J. 2017. Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer. 3 (12), 857–870.

    Article  CAS  Google Scholar 

  14. Rezniczek G.A., Abrahamsberg C., Fuchs P., Spazierer D., Wiche G. 2003. Plectin 5'-transcript diversity: Short alternative sequences determine stability of gene products, initiation of translation and subcellular localization of isoforms. Hum. Mol. Genet, 12 (23), 3181–3194.

    Article  CAS  Google Scholar 

  15. Winter L., Abrahamsberg C., Wiche G. 2008. Plectin isoform 1b mediates mitochondrion – intermediate filament network linkage and controls organelle shape. J. Cell Biol. 181 (6), 903–911.

    Article  CAS  Google Scholar 

  16. Nekrasova O.E., Mendez M.G., Chernoivanenko I.S., Tyurin-Kuzmin P.A., Kuczmarski E.R., Gelfand V.I., Goldman R.D., Minin A.A. 2011. Vimentin intermediate filaments modulate the motility of mitochondria. Mol. Biol. Cell. 22, 2282–2289.

    Article  CAS  Google Scholar 

  17. Rapaport D. 2003. Finding the right organelle: Targeting signals in mitochondrial outer-membrane proteins. EMBO Rep. 4, 948–952.

    Article  CAS  Google Scholar 

  18. Matveeva E.A., Venkova L.S., Chernoivanenko I.S., Minin A.A. 2015. Vimentin is involved in regulation of mitochondrial motility and membrane potential by Rac1. Biol. Open. 4, 1290–1297.

    Article  CAS  Google Scholar 

  19. Meier M., Padilla G.P., Herrmann H., Wedig T., Hergt M., Patel T.R., Stetefeld J., Aebi U., Burkhard P. 2009. Vimentin coil 1A-A molecular switch involved in the initiation of filament elongation. J. Mol. Biol. 390 (2), 245–261.

    Article  CAS  Google Scholar 

  20. Erster O., Liscovitch M. 2010. A modified inverse PCR procedure for insertion, deletion, or replacement of a DNA fragment in a target sequence and its application in the ligand interaction scan method for generation of ligand-regulated proteins. Methods Mol. Biol. 634, 157–174.

    Article  CAS  Google Scholar 

  21. Emanuelsson O., Brunak S., von Heijne G., Nielsen H. 2007. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2, 953–971.

    Article  CAS  Google Scholar 

  22. Quirós P.M., Langer T., López-Otín C. 2015. New roles for mitochondrial proteases in health, ageing and disease Nat. Rev. Mol. Cell Biol. 16 (6), 345–359.

    Article  Google Scholar 

  23. Ebisui C., Tsujinaka T., Kido Y., Iijima S., Yano M., Shibata H., Tanaka T., Mori T. 1994. Role of intracellular proteases in differentiation of L6 myoblast cells. Biochem. Mol. Biol. Int. 32(3), 515–521.

    CAS  PubMed  Google Scholar 

  24. Siklos M., Ben Aissa M., Thatcher G.R. 2015. Cysteine proteases as therapeutic targets: Does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm. Sin B. 5 (6), 506–519.

    Article  Google Scholar 

  25. Wang K.K., Nath R., Posner A., Raser K.J., Buroker-Kilgore M., Hajimohammadreza I. 1996. An alpha-mercaptoacrylic acid derivative is a selective nonpeptide cell-permeable calpain inhibitor and is neuroprotective. Proc. Natl. Acad. Sci. USA. 93, 6687–6692.

    Article  CAS  Google Scholar 

  26. Arrington D.D., Van Vleet T.R., Schnellmann R.G. 2006. Calpain 10: A mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Amer. J. Physiol. – Cell Physiol. 291 (6), 1159–1171.

    Article  Google Scholar 

  27. Nelson W.J., Traub P. 1983. Proteolysis of vimentin and desmin by the Ca2+-activated proteinase specific for these intermediate filament proteins. Mol. Cell. Biol. 3, 1146–1156.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dayal A.A., Medvedeva N.V., Nekrasova T.M., Duhalin S.D., Surin A.K., Minin A.A. 2020. Desmin interacts directly with mitochondria. Int. J. Mol. Sci. 21 (21), 8122.

    Article  CAS  Google Scholar 

  29. Pfanner N., Warscheid B., Wiedemann N. 2019. Mitochondrial proteins: From biogenesis to functional networks. Nat. Rev. Mol. Cell. Biol. 20 (5), 267–284.

    Article  CAS  Google Scholar 

  30. Chernoivanenko I.S., Matveeva E.A., Minin A.A. 2011. Vimentin intermediate filaments increase mitochondrial membrane potential. Biochemistry (Moscow). Supplement Series A. Membr. Cell Biol. 5 (1), 21–28.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 17-04-01775-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Minin.

Ethics declarations

The authors declare that they have no conflict of interest.

All procedures were performed in accordance with the European Communities Council Directive (November 24, 1986; 86/609/EEC) and the Declaration on humane treatment of animals.

Additional information

Translated by A. Dayal

Abbreviations: IF, intermediate filaments; VIF, vimentin intermediate filaments; BCA, bicinchoninic acid; TOM, translocase of the outer membrane; TIM, translocase of the inner membrane; PAGE, polyacrylamide gel electrophoresis; PMSF, phenylmethylsulfonyl fluoride; SDS, sodium dodecyl sulfate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dayal, A.A., Medvedeva, N.V. & Minin, A.A. N-Terminal Fragment of Vimentin Is Responsible for Binding of Mitochondria In Vitro. Biochem. Moscow Suppl. Ser. A 16, 151–157 (2022). https://doi.org/10.1134/S1990747822030059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747822030059

Keywords:

Navigation