Skip to main content
Log in

Membrane-protective properties of isobornylphenols-a new class of antioxidants

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The membrane protective and membrane active properties and the antioxidative activity of new semisynthetic antioxidants—isobornylphenols were studied. The presence of oxidant and cytotoxic properties of the compounds were evaluated considering the degree of hemolysis of erythrocytes, either spontaneous or induced by hydrogen peroxide. All the studied compounds were found to have significant antioxidative activity in certain conditions. But their capacity to protect membrane erythrocytes from oxidative stress substantially depended on the structure and concentration of the compound. The highest membrane protective activity was observed for 2,6-diisobornyl-4-methylphenol, which has isobornyl in both of its ortho-positions. Scanning electron microscopy of blood erythrocyte surface architectonics confirmed the ability of the studied compounds to interact with the cell membrane and to change its structure. A relationship between erythrocyte morphological transformation according to bilayer-couple hypothesis depending on isobornylphenols membrane behavior and the cytotoxic effect of certain compound high concentrations reflected in low membrane protective activity in the model cell system was shown. The data obtained allow us to conclude that the biological activity of isobornylphenols is due to both their antioxidative properties and their ability to interact with the cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burlakova E.B., Alesenko A.V., Molochkina E.M., Palmin N.P., Khrapova N.G. 1975. Bioantioksidanty v luchevom porazhenii i zlokachestvennom roste (Bioantioxidants in radiation injury and cancer growth). M.: Nauka.

    Google Scholar 

  2. Li X.L., Zhou A.G. 2007. Evaluation of the antioxidant effects of polysaccharides extracted from Lycium barbarum. Med Chem Res. 15, 471–482.

    Article  CAS  Google Scholar 

  3. Babich H. 1982. Butylated hydroxytoluene (BHT): A review. Environmental Research. 29(1), 1–29.

    Article  CAS  PubMed  Google Scholar 

  4. Jayalakshmi C.P., Sharma J.D. 1986. Effect of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) on rat erythrocytes. Environmental Research. 41(1), 235–238.

    Article  CAS  PubMed  Google Scholar 

  5. Shertzer H. G., Bannenberg G. L., Rundgren M., Moldéus P. 1991. Relationship of membrane fluidity, chemoprotection, and the intrinsic toxicity of butylated hydroxytoluene. Biochem. Pharmacol. 42(8), 1587–1593.

    Article  CAS  PubMed  Google Scholar 

  6. Burlakova E.B. 2005. Bioantioxidants: Yesterday, today, tomorrow. In: Chemical and biological kinetics. New Horizons. Vol. 2, Biological Kinetics. Eds. Burlakova E.B., Varfolomeev S.D. Leden. Boston: VSP, p. 1–33.

    Google Scholar 

  7. López-Revuelta A., Sánchez-Gallego J.I., Hernández-Hernández A., Sanchez-Yague J., Llanillo M. 2006. Membrane cholesterol contents influence the protective effects of quercetin and rutin in erythrocytes damaged by oxidative stress. Chem. Biol. Interact. 161, 79–91.

    Article  PubMed  Google Scholar 

  8. Sánchez-Gallego J.I., López-Revuelta A., Hernández-Hernández A., Sardina J.L., López-Ruano G., Sánchez-Yagüe J., Llanillo M. 2011. Comparative antioxidant capacities of quercetin and butylated hydroxyanisole in cholesterol-modified erythrocytes damaged by tert-butylhydroperoxide. Food Chem. Toxicol. 49(9), 2212–2221.

    Article  PubMed  Google Scholar 

  9. Hseu Y.-C., Chang W.-H., Chen C.-S., J.-W.L., Huang C.-J., Lu F.-J., Chia Y.-C., Hsu H.-K., Wu J.-J., Yang H.-L. 2008. Antioxidant activities of Toona sinensis leaves extracts using different antioxidant models. Food Chem. Toxicol. 46, 105–114.

    Article  CAS  PubMed  Google Scholar 

  10. Niki E. 2010. Assessment of antioxidant capacity in vitro and in vivo. Free Radic. Biol. Med. 49, 503–515.

    Article  CAS  PubMed  Google Scholar 

  11. Chukicheva I.Y., Kuchin A.V. 2004. Natural and synthetic terpenophenols. Ros. khim. zhurn. (Rus.). 48(3), 21–38.

    CAS  Google Scholar 

  12. Mazaletskaya L.I., Sheludchenko N.I. Shishkina L.N., Kuchin A.V., Chukicheva I.Y. 2011. The kinetic parameters of the reaction of isobornylphenols with peroxyradicals. Neftekhimija (Rus.). 28(1), 78–80.

    Google Scholar 

  13. Plotnikov M.B., Smolyakova V.I., Ivanov I.S., Kuchin A.V., Chukicheva I.Y., Krasnov E.A. 2008. Antithrombogenic and antiplatelet activity of orthoisobornylphenol. Bull. Exp. Biol. and Med. (Rus.). 145(3), 296–299.

    Google Scholar 

  14. Plotnikov M.B., Smolyakova V.I., Ivanov I.S., Kuchin A.V., Chukicheva I.Y., Krasnov E.A. 2009. Neuroprotective properties of dibornol and its mechanisms of action in cerebral ischemia. Vestnik RAMN (Rus.). 11, 12–17.

    Google Scholar 

  15. Chukicheva I.Y., Fedorova I.V., Buravlev E.V., Lumpov A.E., Vikharev Y.B., Anikina L.V., Grishko V.V., Kuchin A.V. 2010. Anti-inflammatory activity of isobornylphenol derivatives. Khimija Prirodnikh Soedineniy (Rus.). 3, 402–403.

    Google Scholar 

  16. Tirzite D.Y., Tirzit G.D., Kastrone V.V., Dubur G.Y. 1982. Some derivatives of 1,4-dihydropyridine inhibite the hemolysis of erythrocytes. Bull. eksperim. biol. med. (Rus.). 94(9), 39–40.

    CAS  Google Scholar 

  17. Deng S.L., Chen W.F., Zhou B., Yang L., Liu Z.L. 2006. Protective effects of curcumin and its analogues against free radical-induced oxidative hemolysis of human red blood cells. Food Chemistry. 98(1), 112–119.

    Article  CAS  Google Scholar 

  18. Yang H.-L., Chen S.-C., Chang N.-W., Chang J.-M., Lee M.-L., Tsai P.-C., Fu H.-H., Kao W.-W., Chiang H.-C., Wang H.-H., Hseu Y.-C. 2006. Protection from oxidative damage using Bidens pilosa extracts in normal human erythrocytes. Food Chem. Toxicol. 44, 1513–1521.

    Article  CAS  PubMed  Google Scholar 

  19. Ajila C.M., Rao P.U.J.S. 2008. Protection against hydrogen peroxide induced oxidative damage in rat erythrocytes by Mangifera indica L. peel extract. Food Chem. Toxicol. 46, 303–309.

    Article  CAS  PubMed  Google Scholar 

  20. Banerjee A., Kunwar A., Mishra B., Priyadarsini K.I. 2008. Concentration dependent antioxidant/pro-oxidant activity of curcumin studies from AAPH induced hemolysis of RBCs. Chem. Biol. Interact. 174(2), 134–139.

    Article  CAS  PubMed  Google Scholar 

  21. Magalhães A.S., Silva B.M., Pereira J.A., Andrade P.B., Valentão P., Carvalho M. 2009. Protective effect of quince (Cydonia oblonga Miller) fruit against oxidative hemolysis of human erythrocytes. Food Chem. Toxicol. 47, 1372–1377.

    Article  PubMed  Google Scholar 

  22. Paiva-Martins F., Fernandes J., Rocha S., Nascimento H., Vitorino R., Amado F., Borges F., Belo L., Santos-Silva A. 2009. Effects of olive oil polyphenols on erythrocyte oxidative damage. Mol. Nutr. Food Res. 53(5), 609–616.

    Article  CAS  PubMed  Google Scholar 

  23. Wang J., Sun B., Cao Y., Tian Y. 2009. Protection of wheat bran feruloyl oligosaccharides against free radical-induced oxidative damage in normal human erythrocytes. Food Chem. Toxicol. 47(7), 1591–1599.

    Article  CAS  PubMed  Google Scholar 

  24. Takebayashi J., Chen J., Tai A. 2010. A method for evaluation of antioxidant activity based on inhibition of free radical-induced erythrocyte hemolysis. Advanced Protocols in Oxidative Stress, Methods in Molecular Biology. 594, 287–296.

    Article  CAS  Google Scholar 

  25. Ko, F.N., Hsiao G., Kuo Y.H. 1997. Protection of oxidative hemolysis bydemethyl diisoeugenol in normal and b-thalassemic red blood cells. Free Radic. Biol. Med. 22, 215–222.

    Article  CAS  PubMed  Google Scholar 

  26. Blasa M., Candiracci M., Accorsi A., Piacentini M.P., Piatti E. 2007. Honey flavonoids as protection agents against oxidative damage to human red blood cells. Food Chemistry. 104, 1635–1640.

    Article  CAS  Google Scholar 

  27. Singh N., Rajini P.S. 2008. Antioxidant-mediated protective effects of potato peel extract in erythrocytes against oxidative damage. Chem. Biol. Interactions. 173, 97–104.

    Article  CAS  Google Scholar 

  28. Costa R.M., Magalhães A.S., Pereira J.A., Andrade P.B., Valentão P., Carvalho M., Silva B.M. 2009. Evaluation of free radical-scavenging and antihemolytic activities of quince (Cydonia oblonga) leaf: A comparative study with green tea (Camellia sinensis). Food Chem. Toxicol. 47, 860–865.

    Article  CAS  PubMed  Google Scholar 

  29. Berg J.M., Kamp J.A.F., Lubin B.H., Roelofsen B., Kuypers F.A. 1992. Kinetics and site specificity of hydroperoxide-induced oxidative damage in red blood cells. Free Radic. Biol. Med. 12(6), 487–498.

    Article  PubMed  Google Scholar 

  30. Halliwell B., Clement M.V., Longa L.H. 2000. Hydrogen peroxide in the human body. FEBS Letters. 486, 10–13.

    Article  CAS  PubMed  Google Scholar 

  31. Kowalczyk A., Puchała M., Wesołowska K., Serafin E. 2007. Inactivation of alcohol dehydrogenase (ADH) by ferryl derivatives of human hemoglobin. Biochim. Biophysic. Acta. 1774, 86–92.

    Article  CAS  Google Scholar 

  32. Murakami K., Mawatari S. 2003. Oxidation of hemoglobin to methemoglobin in intact erythrocyte by a hydroperoxide induces formation of glutathionyl hemoglobin and binding of α-hemoglobin to membrane. Arch. Biochem. Biophys. 417(2), 244–250.

    Article  CAS  PubMed  Google Scholar 

  33. Miki M., Tamai H., Mino M., Yamamoto Y., Niki E. 1987. Archive of Biochemistry and Biophysics. 258, 373–380.

    Article  CAS  Google Scholar 

  34. Mawatari S., Murakami K. 2001. Effects of ascorbate on membrane phospholipids and tocopherols of intact erythrocytes during peroxidation by t-butylhydroperoxide: Comparison with effects of dithiothreitol. Lipids. 36(1), 57–65.

    Article  CAS  PubMed  Google Scholar 

  35. Gendel L.Y., Likhacheva L.I., Bogonatov B.N., Panasenko O.M., Kruglyakova K.E. 1984. Changing the red blood cells shape in the presence of pesticide l l sodium pentachlorophenolate (by means of electron scanning microscopy). DAN SSSR (Rus.). 277, 493–496.

    CAS  Google Scholar 

  36. Handel L.Y., Kim L.V., Luneva O.G., Fedin V.A., Kruglyakova K.E. 1996. Changes in the surface of red blood cells in the presence of synthetic antioxidant phenosan-1. Izvestiya RAS. Biology Series (Rus.). 4, 508–512.

    Google Scholar 

  37. Kazennov A.M., Maslova M.N. 1987. Structural and biochemical properties of the membrane enucleated erythrocytes. Fiziol. Journal. (Rus). 73(12), 1587–1598.

    CAS  Google Scholar 

  38. Novitskiy V.V., Stepovaya E.A., Goldberg V.E., Kolosova M.V., Koreshkova K.G., Sokolova I.B., Bulavina Y.V. 1999. Surface architectonics and ultrastructure of red blood cells in the peripheral blood in cancer patients. Bull. Exp. Biol. and Med. (Rus.). 127(6), 680–682.

    Google Scholar 

  39. Novitskiy V.V., Ryazantseva N.V., Stepovaya E.A. 2004. Fiziologija i patofiziologija eritrocita (Physiology and pathophysiology of the red blood cell) Tomsk: Univ. Press.

    Google Scholar 

  40. Soderberg L., Haag L., Hoglund P., Roth B., Stenberg P., Wahlgren M. 2009. The effects of lipophilic substances on the shape of erythrocytes demonstrated by a new in vitro-method. Eur. J. of Pharmaceutics. Sciences. 36, 458–464.

    Article  Google Scholar 

  41. Kumar A., Ali M., Pandey B.N., Hassan P.A., Mishra K.P. 2010. Role of membrane sialic acid and glycophorin protein in thorium induced aggregation and hemolysis of human erythrocytes. Biochimie. 92, 869–879.

    Article  CAS  PubMed  Google Scholar 

  42. Quintanar-Escorza M.A., González-Martínez M.T., Navarro L., Maldonado M., Arévalo B., Calderón-Salinas J.V. 2007. Intracellular free calcium concentration and calcium transport in human erythrocytes of lead-exposed workers. Toxicol. Applied Pharmacol. 220, 1–8.

    Article  CAS  Google Scholar 

  43. Parshina E.J., Gandel L.Y., Rubin A.B. 2004. The impact of the novel hybrid antioxidants IHFANs on the morphology of red blood cells. Biofizika (Rus.). 49(6), 1094–1098.

    CAS  Google Scholar 

  44. Parshina E.J., Gandel L.Y., Rubin A.B. 2007. Impact of the IHFANs on the structural characteristics of the membrane of red blood cells. Izvestiya. Series biol. (Rus.). 6, 645–649.

    Google Scholar 

  45. Battistelli M., De Sanctis R., De Bellis R., Cucchiarini L., Dachà M., Gobbi P. 2005. Rhodiola rosea as antioxidant in red blood cells: Ultrastructural and hemolytic behaviour. Eur. J. Histochem. 49(3), 243–254.

    CAS  PubMed  Google Scholar 

  46. Suwalskya M., Vargasb P., Avellob M., Villenac F., Sotomayor C.P. 2008. Human erythrocytes are affected in vitro by flavonoids of Aristotelia chilensis (Maqui) leaves. Intern. J. Pharmaceutics. 363, 85–90.

    Article  Google Scholar 

  47. Luneva O.G. 2001. The interaction of non-electrolytes-phenosan-1, derivatives of 5-hydroxybenzimidazole, Γ-carboline and fatty acids with red blood cell membrane. Cand. Sci. (Chem.) Dissertaion, Moscow, 2001.

    Google Scholar 

  48. Lunev O.G., Gandel L.Y., Kuznetsov Y.V., Smirnov L.D., 2005. Features of the interaction of non-electrolytes derivatives of 5-hydroxybenzimidazole with membrane of erythrocytes. Biofizika (Rus.). 50(2), 310–315.

    Google Scholar 

  49. Sheetz M.P., Singer S.J. 1974. Biological membranes as bilayer couples. A molecular mechanism of drugerythrocyte interactions. Proc. Natl. Acad. Sci. USA. 71(11), 4457–4461.

    Article  CAS  Google Scholar 

  50. Chukicheva I.Y., Kuchin A.V., Spirikhin L.V., Borbulevich O.J., Churakov A.V., Belokon A.I. 2003. Alkylation of the phenol with camphene in the presence of aluminum phenolate. Khimia i kompjuternoe modelirovanie. Butlerovskie ssobshchenia (Rus.). 1, 9–13.

    Google Scholar 

  51. Chukicheva I.Yu., Timusheva I.V., Spirikhin L.V., Kutchin A.V. 2007. Alkylation of pyrocatechol and resorcinol by camphene. Chem. Nat. Compounds. 43(3), 245–249.

    Article  CAS  Google Scholar 

  52. Koga T., Moro K., Terao J. 1998. Protective effect of a vitamin E analog, phosphatidylchromanol, against oxidative hemolysis of human erythrocytes. Lipids. 33(6), 589–595.

    Article  CAS  PubMed  Google Scholar 

  53. Li X.L., Zhou A.G. 2007. Evaluation of the antioxidant effects of polysaccharides extracted from Lycium barbarum. Med Chem. Res. 15, 471–482.

    Article  CAS  Google Scholar 

  54. Öztürk M., Aydoğmuş-Öztürk F., Duru M.E., Topçu G. 2007. Antioxidant activity of stem and root extracts of Rhubarb (Rheum ribes): An edible medicinal plant. Food Chem. 103(2), 623–630.

    Article  Google Scholar 

  55. Barreira J.C., Ferreira I.C., Oliveira M.B., Pereira J.A. 2008. Antioxidant activity and bioactive compounds of ten Portuguese regional and commercial almond cultivars. Food Chem. Toxicol. 46(6), 2230–2235.

    Article  CAS  PubMed  Google Scholar 

  56. Koroluk M.A., Ivanova, L.I., Mayorova I.G. 1988. Determination of the catalase activity. Laboratornoe delo (Rus.). 1, 16–19.

    Google Scholar 

  57. Johnson RM, Goyette GJ, Ravindranath Y., Hoc Y.-S. 2005. Hemoglobin autooxidation and regulation of endogenous H2O2 levels in erythrocytes. Free Radic. Biol. Med. 39, 1407–1417.

    Article  CAS  PubMed  Google Scholar 

  58. Tyulina O.V., Huentelman M.J., Prokopieva V.D., Boldyrev A.A., Johnson P. 2000. Does ethanol metabolism affect erythrocyte hemolysis? Biochim. Biophys. Acta. Molecular Basis of Disease. 1535(1), 69–77.

    Article  CAS  Google Scholar 

  59. Wang C., Qin X., Huang B., He F., Zeng C. 2010. Hemolysis of human erythrocytes induced by melamine-cyanurate complex. Biochem. Biophys. Res. Communic. 402, 773–777.

    Article  CAS  Google Scholar 

  60. Asakawa T., Matsushita S. 1980. Coloring conditions of thiobarbituric acid test for detecting lipid hydroperoxides. Lipids. 15(3), 137–140.

    Article  CAS  Google Scholar 

  61. Kozinets G. I., Simovart Y.A. 1984. Poverkhnostnaya arkhotektonika kletok perifericheskoi krovi v norme I pri zabolevaniyakh sistemy krovi (Surface architectonics of peripheral blood cells in healthy blood systems and systems in disease). Tallinn: Valgus.

    Google Scholar 

  62. Emanuel N.M., Lyaskovskaya Y.N. 1961. Tormozhenie processov okislenija zhirov (Inhibition of the fat oxidation) M.: Pishchepromizdat.

    Google Scholar 

  63. Nohl H., Stolze K. 1998. The effects of xenobiotics on erythrocytes. General Pharmacology. 31(3), 343–347.

    Article  CAS  PubMed  Google Scholar 

  64. Yesil-Celiktas O., Girgin G., Orhan H., Wichers H.J., Bedir E., Vardar-Sukan F. 2007. Screening of free radical scavenging capacity and antioxidant activities of Rosmarinus officinalis extracts with focus on location and harvesting times. Eur. Food Res. Technol. 224, 443–451.

    Article  CAS  Google Scholar 

  65. Bukowska B., Kowalska S. 2004. Phenol and catechol induce prehemolytic and hemolytic changes in human erythrocytes. Toxicology Letters. 152, 73–84.

    Article  CAS  PubMed  Google Scholar 

  66. Bukowska B., Michałowicz J., Krokosz A., Sicińska P. 2007. Comparison of the effect of phenol and its derivatives on protein and free radical formation in human erythrocytes (in vitro). Blood Cells, Molecules, and Diseases. 39, 238–244.

    Article  CAS  PubMed  Google Scholar 

  67. He J., Lin J., Li J., Zhang J.H., Sun X.M., Zeng C.M. 2009. Dual effects of Ginkgo biloba leaf extract on human red blood cells. Basic Clin. Pharmacol. Toxicol. 104(2), 138–144.

    Article  CAS  PubMed  Google Scholar 

  68. Parshina E.J., Gandel L.Y., Rubin A.B. 2009. Hemolytic activity of new hybrid antioxidants — ICH-FANOV. Biofizika (Rus.). 54(6), 1051–1054.

    CAS  Google Scholar 

  69. Marakulina K.M., Kramor R.V., Plaschina I.G., Shishkina L.N. 2011. Evaluation of membrane active and membrane protective properties of the series of isobornylphenols in the model systems. Proceedings of the International conference Renewable wood and plant resources: Chemistry, technology, pharmacology, medicine, St. Petersburg. P. 287–288.

    Google Scholar 

  70. Vtyurin B.V., Kaem R.I., Chervonskaya N.V. 1982. Changes of the red blood cells membrane and its configuration after the burn septic. Bull. eksperim. biol. med. (Rus.). 94(9), 117–119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Shevchenko.

Additional information

Original Russian Text © O.G. Shevchenko, S.N. Plyusnina, L.N. Shishkina, I.Yu. Chukicheva, I.V. Fedorova, A.V. Kuchin, 2013, published in Biologicheskie Membrany, 2013, Vol. 30, No. 1, pp. 40–51.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevchenko, O.G., Plyusnina, S.N., Shishkina, L.N. et al. Membrane-protective properties of isobornylphenols-a new class of antioxidants. Biochem. Moscow Suppl. Ser. A 7, 302–312 (2013). https://doi.org/10.1134/S1990747812060062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747812060062

Keywords

Navigation