Skip to main content
Log in

Cell Motility and Cytoskeleton Structure under the Influence of the Small GTPase RhoA Activator and Inhibitor during Replicative Senescence Process in the MSC Line Derived from the Eyelid Skin of Adult Donor

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The widespread use of human MSCs in biomedical technologies and the important role of cell migration in biomedical processes lead to the need to deepen fundamental researches of these cells’ motility during replicative senescence (RS). In this work, we performed a comparative analysis of the structure of the actin cytoskeleton and characteristics of the DF-2 cells’ motility with the presence of an activator (LPA) or an inhibitor (Y-27632) of the small GTPase RhoA at different stages of RS. The following results were obtained: 1) it was shown the presence of RS during long-term cultivation (8–28 passages) of control cells; 2) at the late stage of RS, the presence of 10 ng/mL LPA for 24 h did not cause changes in the structure of the actin cytoskeleton, while the inhibitor of the small GTPase RhoA activity contributed to a significant decrease in the number of stress fibers; 3) changes in the speed and sinuosity of cell movements in the presence of LPA or Y-27632 depend on the stage of RS: in particular, LPA reduces, and Y-27632 increases the mean speed of cell movement at passages 21 and 28 compared with the control, and at passage 8 these agents do not affect cell speed. The results seem to indicate an increase in the activity of RhoA-associated signaling pathways during RS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Albu, S., Kumru, H., Coll, R., Vives, J., Vallés, M., Denito-Penalva, J., Rodriguez, L., Codinach, M., Hernández, J., Navarro, X., and Vidal, J., Clinical effects of intrathecal administration of expanded Wharton jelly mesenchymal stromal cells in patients with chronic complete spinal cord injury: a randomized controlled study, Cytotherapy, 2021, vol. 23, p. 146. https://doi.org/10.1016/j.jcyt.2020.08.008

    Article  CAS  PubMed  Google Scholar 

  2. Alessio, N., Pipino, C., Mandatori, D., Di Tomo, P., Ferone, A., Marchiso, M., Melone, M.A.B., Peluso, G., Pandolfi, A., and Galderisi, U., Mesenchymal stromal cells from amniotic fluid are less prone to senescence compared to those obtained from bone marrow: an in vitro study, J. Cell Physiol., 2018. https://doi.org/10.1002/jcp.26845

  3. Alhussein, G., Shanti, A., Farhat, I.A.H., Timraz, S.B.,H., Alwahab, N.S.A., Pearson, Y.E., Martin, M.N., Christoforou, N., and Teo, J.C.M., A spatiotemporal characterization method for the dynamic cytoskeleton, Cytoskeleton, 2016, vol. 73, p. 221. https://doi.org/10.1002/cm.21297

    Article  CAS  PubMed  Google Scholar 

  4. Badri, L. and Lama, V.N., Lysophosphatidic acid induces migration of human lung-resident mesenchymal stem cells through the β-catenin pathway, Stem Cells, 2012, vol. 30, p. 2010. https://doi.org/10.1002/stem.1171

    Article  CAS  PubMed  Google Scholar 

  5. Bieback, K., Hecker, A., Kocaömer, A., Lannert, H., Schallmoser, K., Strunk, D., and Klüter, H., Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow, Stem Cells, 2009, vol. 27, p. 2331. https://doi.org/10.1002/stem.139

    Article  CAS  PubMed  Google Scholar 

  6. Bobkov, D.E. and Poljanskaya, G.G., Cellular and molecular characteristics of replicative aging of human mesenchymal stem cells (review), Tsitologiya, 2020, vol. 62, p. 782. https://doi.https://doi.org/10.31857/S0041377120110036

  7. Bobkov, D., Polyanskaya, A., Musorina, A., Lomert, E., Shabelnikov, S., and Poljanskaya, G., Replicative senescence in MSCWJ-1 human umbilical cord mesenchymal stem cells is marked by characteristic changes in motility, cytoskeletal organization, and RhoA localization, Mol. Biol. Rep., 2020, vol. 47, p. 3867. https://doi.org/10.1007/s11033-020-05476-6

    Article  CAS  PubMed  Google Scholar 

  8. Bobkov, D., Polyanskaya, A., Musorina, A., and Poljanskaya, G., The RhoA nuclear localization changes in replicative senescence: new evidence from in vitro human mesenchymal stem cells studies, BIOCELL, 2022, vol. 46, p. 2053. https://doi.org/10.32604/biocell.2022.019469

    Article  CAS  Google Scholar 

  9. Diao, Y.-M. and Hong, J., Rho-associated protein kinase inhibitor, Y-27632, significantly enhances cell adhesion and induces a delay in G1 to S phase transition in rabbit corneal endothelial cells, Mol. Med. Rep., 2015, vol. 12, p. 1951. https://doi.org/10.3892/mmr.2015.3628

    Article  CAS  PubMed  Google Scholar 

  10. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D.J., and Horwitz, E., Minimal criteria for defining multipotent mesenchymal stromal cells. Position statement, Int. Soc. Cell. Ther. Cytother., 2006, vol. 8, p. 315.

    CAS  Google Scholar 

  11. Facchin, F., Bianconi, E., Romano, M., Impellizzeri, A., Alviano, F., Maioli, M., Canaider, S., and Ventura, C., Comparison of oxidative stress effects on senescence patterning of human adult and perinatal tissue-derived stem cells in short and long-term cultures, Int. J. Med. Sci., 2018, vol. 15, p. 1486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Geissler, S., Textor, M., Kühnisch, J., Könnig, D., Klein, O., Ode, A., Pfitzner, T., Adjaye, J., Kasper, G., and Duda, G.N., Functional comparison of chronological and in vitro aging: differential role of the cytoskeleton and mitochondria in mesenchymal stromal cells, PLoS One, 2012, vol. 7, p. e52700. https://doi.org/10.1371/journal.pone.0052700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goncharova, D.F., Polyanskaya, A.V., Musorina, A.S., Poljanskaya, G.G., and Bobkov, D.E., Analysis of nuclear-cytoplasmic redistribution of actin-binding protein apha-actinin-4 and signaling protein RhoA in the process of replicative senescence of human epicardial adipose tissue-derived ADH-MSC cell line, Cell Tissue Biol., 2021, vol. 15, p. 465. https://doi.org/10.1134/S1990519X21050035

    Article  CAS  Google Scholar 

  14. Guan, Y.T., Xie, Y., Li, D.S., Zhu, Y.Y., Zhang, X.L., Feng, Y.L., Chen, Y.P., Xu, L.J., Liao, P.F., and Wang, G., Comparison of biological characteristics of mesenchymal stem cells derived from the human umbilical cord and decidua parietalis, 2019, vol. 20, p. 633. https://doi.org/10.3892/mmr.2019.10286

  15. Jin, Q., Yuan, K., Lin, W., Niu, C., Ma, R., and Huang, Z., Comparative characterization of mesenchymal stem cells from human dental pulp and adipose tissue for bone regeneration potential, Artif. Cells Nanomed. Biotechnol., 2019, vol. 47, p. 1577. https://doi.org/10.1080/21691401.2019.1594861

    Article  CAS  PubMed  Google Scholar 

  16. Karperien, A., FracLac for ImageJ, Charles Sturt University, Colombo, 2013. https://doi.org/10.13140/2.1.4775.8402

  17. Khasawneh, R.B., Al Sharie, A.H., Abu-El-Rub, E., Serhan, A.O., and Obeidat, H.N., Addressing the impact of different fetal bovine serum percentages on mesenchymal stem cells biological performance, Mol. Biol. Rep., 2019, vol. 46 P. 4437. https://doi.org/10.1007/s11033-019-04898-1

    Article  CAS  PubMed  Google Scholar 

  18. Koltsova, A.M., Zenin, V.V., Petrosyan, M.A., Turilova, V.I., Yakovleva, T.K., and Poljanskaya, G.G., Isolation and characterization of mesenchymal stem cell line derived from different regions of the placenta of the same donor, Cell Tissue Biol., 2021, vol. 15, p. 356.

    Article  CAS  Google Scholar 

  19. Krylova, T.A., Musorina, A.S., Zenin, V.V., and Poljanskaya, G.G., Cellular spheroids obtained from mesenchymal stem cells derived from bone marrow and limb muscle of early human embryo, Cell Tissue Biol., 2015, vol. 9, p. 431.

    Article  Google Scholar 

  20. Larsen, M., Tremblay, M.L., and Yamada, K.M., Phosphatases in cell-matrix adhesion and migration, Nat. Rev. Mol. Cell Biol., 2003, vol. 4, p. 700.

    Article  CAS  PubMed  Google Scholar 

  21. Le Clainche, C. and Carlier, M.F., Regulation of actin assembly associated with protrusion and adhesion in cell migration, Physiol. Rev., 2008, vol. 88, p. 489.

    Article  CAS  PubMed  Google Scholar 

  22. Li, S., Wang, C., Dai, Y., Yang, Y., Pan, H., Zhong, J., and Chen, J., The stimulatory effect of ROCK inhibitor on bovine corneal endothelial cells, Tissue Cell, 2013, vol. 45, p. 387. https://doi.org/10.1016/j.tice.2013.06.006

    Article  CAS  PubMed  Google Scholar 

  23. Li, J., Xu, S.-Q., Zhao, Y.-M., Yu, S., Ge, L.-H., and Xu, B.-H., Comparison of the biological characteristics of human mesenchymal stem cells derived from exfoliated deciduous teeth, bone marrow, gingival tissue, and umbilical cord, Mol. Med. Rep., 2018, vol. 18, p. 4969. https://doi.org/10.3892/mmr.2018.9501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, Y., Li, Y.Q., Wang, H.Y., Li, Y.J., Liu, G.Y. Xu, X., Wu, X.B., Jing, Y.G., Yao, Y., Wu, C.T., and Jin, J.D., Effect of serum choice on replicative senescence in mesenchymal stromal cells, Cytotherapy, 2015, vol. 17, p. 874. https://doi.org/10.1016/j.jcyt.2015.02.012

    Article  CAS  PubMed  Google Scholar 

  25. Mannino, G., Russo, C., Longo, A., Anfuso, C.G., Lupo, G., Furno, D.L., Giuffrida, R., and Giurdanella, G., Potential therapeutic applications of mesenchymal stem cells for the treatment of eye diseases, World J. Stem Cells, 2021, vol. 13, p. 632. https://doi.org/10.4252/wjsc.v13.i6.632

    Article  PubMed  PubMed Central  Google Scholar 

  26. McLean, D.J. and Skowron Volponi, M.A., trajr: an R package for characterisation of animal trajectories, Ethology, 2018, vol. 124, p. 440. https://doi.org/10.1111/eth.12739

    Article  Google Scholar 

  27. Moghadasi, S., Elveny, M., Rahman, H.S., Suksatan, W., Jalil, A.T., Abdelbasset, W.K., Yumashev, A.V., Shariatzadeh, S., Motavalli, R., Behzad, F., Marofi, F., Hassanzadeh, A., Pathak, Y., and Jarahian, M., A paradigm shift in cell-free approach: the emerging role of MSCs-derived exosomes in regenerative medicine, J. Transl. Med., 2021, vol. 19, p. 302. https://doi.org/10.1186/s12967-021-02980-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moujaber, O., Fishbein, F., Omran, N., Liang, Y., Colmegna, I., Presley, J.F, and Stochaj, U., Cellular senescence is associated with reorganization of the microtubule cytoskeleton, Cell Mol. Life Sci., 2019, vol. 76, p. 1169.

    Article  CAS  PubMed  Google Scholar 

  29. Özcan, S., Alessio, N., Acar, M.B., Mert, E., Omerli, F., Peluso, G., and Galderisi, U., Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses, Aging (Albany, NY), 2016, vol. 8, p. 1316.

    Article  PubMed  Google Scholar 

  30. Pipparelli, A., Arsenijevic, Y., Thuret, G., Gain, P., Nicolas, M., and Majo, F., ROCK inhibitor enhances adhesion and wound healing of human corneal endothelial cells, PLoS One, 2013, vol. 8, p. e62095. https://doi.org/10.1371/journal.pone.0062095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Poljanskaya, G.G., Comparative analysis of the lines of human mesenchymal stem cells derived in the collection of cell cultures of vertebrates (review), Klet. Kul’tury, 2018, no. 34, p. 3.

  32. Poljanskaya, G.G., Sizova, L.S., and Nikolaenko, N.S., Karyotypic characteristics of the Indian muntjak skin fibroblast line when cultured with different serums, Tsitologiya, 1993, vol. 35, p. 86.

    Google Scholar 

  33. Poljanskaya, G.G., Efremova, T.N., Koltsova, A.M., Musorina, A.S., Sharlaimova, N.S., and Yakovleva, T.K., Metodicheskoe posobie po rabote s kletochnymi kul’turami cheloveka i zhivotnykh (Methodological Guide for Working with Human and Animal Cell Cultures), St. Petersburg: Polytekh Press, 2019. ISBN 978-5-7422-6602-0.

  34. Qian, A.R., Li, D., Han, J., Gao, X., Di, S.M., Zhang, W., and Shang, P., Fractal dimension as a measure of altered actin cytoskeleton in MC3T3-E1 cells under simulated microgravity using 3-D/2-D clinostats, IEEE Trans. Biomed. Eng., 2012, vol. 59, p. 1374. https://doi.org/ https://doi.org/10.1109/TBME.2012.2187785

    Article  CAS  PubMed  Google Scholar 

  35. R Core Team, R: a Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing, 2022. https://www.R-project.org.

  36. Raposo, L., Lourenço, A.P., Nascimento, D.S., Rui Cerqueira, R., Cardim, N., and Leite-Moreira, A., Human umbilical cord tissue-derived mesenchymal stromal cells as adjuvant therapy for myocardial infarction: a review of current evidence focusing on pre-clinical large animal models and early human trials, Cytotherapy, 2021, vol. 23, p. 974. https://doi.org/10.1016/j.jcyt.2021.05.002

    Article  PubMed  Google Scholar 

  37. Rueden, C.T., Schindelin, J., Hiner, M.C., DeZonia, B.E., Walter, A.E., Arena, E.T., and Eliceiri, K.W., Image J2: ImageJ for the next gen- eration of scientific image data, BMC Bioinform., 2017, vol. 18, p. 529. https://doi.org/10.1186/s12859-017-1934-z

    Article  Google Scholar 

  38. Saleh, M., Vaezi, A.A., Aliannejad, R., Sohrabpour, A.A., Kiaei, S.Z.F., Shadnoush, M., Siavashi, V., Aghaghazvini, L., Khoundabi, B., Abdoli, S., Chahardouli, B., Seyhoun, I., Alijani, N., and Verdi, J., Cell therapy in patients with COVID-19 using Wharton’s jelly mesenchymal stem cells: a phase 1 clinical trial, Stem Cell Res. Ther., 2021, vol. 12, p. 410. https://doi.org/10.1186/s13287-021-02483-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sandon, F., “Student’s” Collected Papers, Pearson, E.S. and Wishart, J., Eds., Math. Gaz., 1943, vol. 27, p. 225.

    Google Scholar 

  40. Semenova, E., Grudniak, M.P., Machaj, E.K., Bocian, K., Chroscinska-Krawczyk, M., Trochonowicz, M., Stepaniec, I.M., Murzyn, M., Zagorska, K.E., Boruczkowski, D., Kolanowski, T.J., Oldak, T., and Rozwadowska, N., Mesenchymal stromal cells from different parts of umbilical cord: approach to comparison & characteristics. Stem Cell Rev. Rep, 2021, vol. 17, p. 1780. https://doi.org/10.1007/s12015-021-10157-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sensebé, L., Krampera, M., Schrezenmeier, H., Bourin, P., and Giordano, R., Mesenchymal stem cells for clinical application, Vox Sang, 2010, vol. 98, p. 93. https://doi.org/10.1111/j.1423-0410.2009.01227.x

    Article  CAS  PubMed  Google Scholar 

  42. Shapiro, S.S. and Francia, R.S., An approximate analysis of variance test for normality, J. Am. Stat. Assoc., 1972, vol. 67, p. 215. https://doi.org/ 481232https://doi.org/10.1080/01621459.1972.10

  43. Shin, S., Lee, J., Kwon, Y., Park, K.-S., Jeong, J.-H., Choi, S.-J., Bang, S., Chang, J., and Lee, C., Comparative proteomic analysis of the mesenchymal stem cells secretome from adipose, bone marrow, placenta and Wharton’s jelly, Int. J. Mol. Sci., 2021, vol. 22, p. 845. https://doi.org/10.3390/ijms22020845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Smojver, I., Katalinić, I., Bjelica, R., Dragana Gabrić, D., Matišić, V., Vilim Molnar, V., and Primorac, D., Mesenchymal stem cells based treatment in dental medicine: a narrative review, Int. J. Mol. Sci., 2022, vol. 23, p. 1662. https://doi.org/10.3390/ijms23031662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stanko, P., Kaiserova, K., Altanerova, V., and Altaner, C., Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression, Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2014, vol. 158, p. 373. https://doi.org/10.5507/bp.2013.078

    Article  PubMed  Google Scholar 

  46. Su, J., Ge, X., Jiang, N., Zhang, Z., and Wu, X., Efficacy of mesenchymal stem cells from human exfoliated deciduous teeth and their derivatives in inflammatory diseases therapy, Curr. Stem Cell Res. Ther., 2022. https://doi.org/10.2174/1574888X17666220417153309

  47. Sun, H., Shi, C., Ye, Z., Yao, B., Li, C., Wang, X., and Qian, Q., The role of mesenchymal stem cells in liver injury (review), Cell Biol. Int., 2022, vol. 46, p. 501. https://doi.org/10.1002/cbin.11725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tai, C., Wang, L., Xie, Y., Gao, T., Huang, F., and Wang, B., Analysis of key distinct biological characteristics of human placenta-derived mesenchymal stromal cells and individual heterogeneity attributing to donors, Cells Tissue Organs, 2021, vol. 210, p. 45.https://doi.org/10.1159/000513038

    Article  CAS  Google Scholar 

  49. Terunuma, A., Ashiba, K., Takane, T., Sakaguchi, Y., and Terunuma, H., Comparative transcriptomic analysis of human mesenchymal stem cells derived from dental pulp and adipose tissues, J. Stem Cells Regen. Med., 2019, vol. 15, p. 8. https://doi.org/10.46582/jsrm.1501003

    Article  PubMed  PubMed Central  Google Scholar 

  50. Toranova, P., Lochovska, K., Pytlik, R., and Kalbasova, M., The impact of various culture conditions on human mesenchymal stromal cells metabolism, Stem Cells Int., 2021, vol. 2021, p. 6659244. https://doi.org/10.1155/2021/6659244

    Article  CAS  Google Scholar 

  51. Turinetto, V., Vitale, E., and Giachino, C., Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy, Int. J. Mol. Sci., 2016, vol. 17, p. 1164. https://doi.org/10.3390/ijms17071164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Voronkina, I.V., Smagina, L.V., Krylova, T.A., Musorina, A.S., and Poljanskaya, G.G., Analysis of matrix metalloproteinase activity during differentiation of mesenchymal stem cells isolated from different tissues of one donor, Cell Tissue Biol., 2017, vol. 11, p. 95.

    Article  Google Scholar 

  53. Voronkina, I.V., Smagina, L.V., Bildyug, N.B., Musori-na, A.S., and Poljanskaya, G.G., Dynamics of matrix metalloproteinase activity and extracellular matrix proteins content in the process of replicative senescence of human mesenchymal stem cells, Cell Tissue Biol., 2020, vol. 14, p. 349.

    Article  Google Scholar 

  54. Waliszewski, P., The quantitative criteria based on the fractal dimensions, entropy, and lacunarity for the spatial distribution of cancer cell nuclei enable identification of low or high aggressive prostate carcinomas, Front. Physiol., 2016, vol. 7, p. 34. https://doi.org/10.3389/fphys.2016.00034

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang, D. and Jang, D.J., Protein kinase CK2 regulates cytoskeletal reorganization during ionizing radiation-induced senescence of human mesenchymal stem cells, Cancer Res., 2009, vol. 69, p. 8200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wilcoxon, F., Individual comparisons by ranking methods, Biometrics Bull., 1945, vol. 1, p. 80. https://doi.org/10.2307/3001968

    Article  Google Scholar 

  57. Xiao, Z., Lei, T., Liu, Y., Yang, Y., Bi, W., and Du, H., The potential therapy with dental tissue-derived mesenchymal stem cells in Parkinson’s disease, Stem Cell Res. Ther., 2021, vol. 12, p. 5. https://doi.org/10.1186/s13287-020-01957-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang, C., Chen, Y., Zhong, L., You, M., Ya, Z., Luo, M., Zhang, B., Yang, B., and Chen, Q., Homogeneity and heterogeneity of biological characteristics in mesenchymal stem cells from human umbilical cords and exfoliated deciduous teeth, Biochem. Cell Biol., 2019, vol. 98, p. 415. https://doi.org/10.1139/bcb-2019-0253

    Article  CAS  PubMed  Google Scholar 

  59. Yigitbilek, F., Conley, S.M., Tang, H., Saadiq, I.M., Jordan, K.L., Lerman, L.O., and Taner, T., Comparable in vitro function of human liver-derived and adipose tissue-derived mesenchymal stromal cells: implications for cell-based therapy, Front. Cell Dev. Biol., 2021, vol. 9, p. 641792. https://doi.org/10.3389/fcell.2021.641792

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhang, X., Li, N., Zhu, Y., and Wen, W., The role of mesenchymal stem cells in the occurrence, development, and therapy of hepatocellular carcinoma (review), Cancer Med., 2022, vol. 11, p. 931. https://doi.org/10.1002/cam4.4521

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was carried out within the framework of the State Assignment (no. AAAA-A19-119020-190093-9) of the Institute of Cytology of the Russian Academy of Sciences and was supported by the Ministry of Science and Higher Education of the Russian Federation under project 15.BRK.21.0011 (Agreement no. 075-15-2021-1063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Bobkov.

Ethics declarations

The authors declare no conflict of interests. Animals and humans did not participate in the experiments.

Additional information

Accepted abbreviations: MSC—mesenchymal stem cells; RS— replicative senescence; LPA—lysophosphatidic acid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobkov, D.E., Polyanskaya, A.V., Musorina, A.S. et al. Cell Motility and Cytoskeleton Structure under the Influence of the Small GTPase RhoA Activator and Inhibitor during Replicative Senescence Process in the MSC Line Derived from the Eyelid Skin of Adult Donor. Cell Tiss. Biol. 17, 56–66 (2023). https://doi.org/10.1134/S1990519X23010029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23010029

Keywords:

Navigation