Skip to main content
Log in

Neurogenic potential of human mesenchymal stem cells isolated from bone marrow, adipose tissue and endometrium: a Comparative study

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) can be isolated from many adult tissue sources. These cells are a valuable substrate in cell therapy for a substantial number of diseases and injuries. Different types of MSCs vary in plasticity. We performed a comparative study of the neurogenic potential of three types of human MSCs derived from bone marrow (BMSCs), subcutaneous adipose tissue (ADSCs) and endometrium (isolated from the menstrual blood) (eMSCs). It was shown that all three types of MSC cultures demonstrate multipotent plasticity and predisposition to neurogenesis, based on the expression of pluripotency marker SSEA-4 and neuronal precursors markers nestin and beta-III-tubulin. Further analysis revealed a transcription of the neuronal marker MAP2 and neurotrophin-3 in the undifferentiated BMSCs and ADSCs. Additionally, a significant basal level of synthesis of brain-derived neurotrophic factor (BDNF) in the eMSC culture was also observed. Stimulation of neural induction with agents such as 5-azacytidine, recombinant human basic fibroblast growth factor (bFGF), recombinant human epidermal growth factor (EGF), a recombinant human fibroblast growth factor 8 (FGF8), morphogen SHH (sonic hedgehog), retinoic acid (RA) and isobutyl-methyl-xanthine (IBMX), showed further differences in the neurogenic potential of the MSCs. The components of the extracellular matrix, such as Matrigel and laminin, were also the important inducers of differentiation. The most effective neural induction in the BMSCs proceeded without the RA participation while pretreated with 5-azacytidine. In contrary, in case of eMSCs RA was a necessary agent of neural differentiation as it stimulated the transcription of neurotrophin-4 and the elevation of secretion level of BDNF. The use of laminin as the substrate in the derived eMSCs appeared to be critical, though an incubation of the cells with 5-azacytidine was optional. As far as the derived ADSCs, RA in combination with 5-azacytidine caused the elevation of expression of MAP2, but reduced the secretion of BDNF. Thus, the effect of RA on neural differentiation of ADSCs is ambiguous and, together with the study of its signaling pathways in the MSCs, requires further research. The therapeutic effect of transplanted MSCs is commonly explained by their paracrine activity. The high basal level of BDNF synthesis in the eMSCs, along with their high proliferative rate, non-invasive extraction and neural predisposition, is a powerful argument for the use of the intact eMSCs as a substrate in cell therapy to repair a nerve tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MSCs:

mesenchymal stem cells

ADT:

subcu-taneous adipose tissue

ADSCs:

MSCs derived from ADT

BM:

red bone marrow

BMSCs:

MSCs isolated from BM

HSCs:

hematopoietic stem cells

eMSCs:

endometrial mesenchymal stem cells derived from menstrual blood

ESCs:

embryonic stem cells

References

  • Acheson, A., Conover, J.C., Fandl, J.P., DeChiara, T.M., Russell, M., Thadani, A., Squinto, S.P., Yancopoulos, G.D., and Lindsay, R.M., A BDNF autocrine loop in adult sensory neurons prevents cell death, Nature, 1995, vol. 374, pp. 450–453.

    Article  PubMed  CAS  Google Scholar 

  • Anisimov, S.V., Cell therapy of Parkinson’s disease: IV. Risks and prospects, Usp. Gerontol., 2009, vol. 22, no. 3, pp. 418–439.

    CAS  Google Scholar 

  • Bain, G., Kitchens, D., Yao, M., Huettner, J.E., and Gottlieb, D.I., Embryonic stem cells express neuronal properties in vitro, Dev. Biol., 1995, vol. 168, pp. 342–357.

    Article  PubMed  CAS  Google Scholar 

  • Blondheim, N.R., Levy, Y.S., Ben-Zur, T., Burshtein, A., Cherlow, T., Kan, I., Barzilai, R., Bahat-Stromza, M., Barhum, Y., Bulvik, S., Melamed, E., and Offen, D., Human mesenchymal stem cells express neural genes, suggesting a neural predisposition, Stem Cells Dev., 2006, vol. 15, pp. 141–164.

    Article  PubMed  CAS  Google Scholar 

  • Borlongan, C.V., Kaneko, Y., Maki, M., Yu, S.J., Ali, M., Allickson, J.G., Sanberg, C.D., Kuzmin-Nichols, N., and Sanberg, P.R., Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke, Stem Cells Dev., 2010, vol. 19, pp. 439–452.

    Article  PubMed  CAS  Google Scholar 

  • Buhring, H.J. and Battula, V.L., Novel markers for the prospective isolation of human MSC, Ann. N.Y. Acad. Sci., 2007, vol. 1106, pp. 262–271.

    Article  PubMed  Google Scholar 

  • Chen, C.W., Liu, C.S., Chiu, I.M., Shen, S.C., Pan, H.C., Lee, K.H., Lin, S.Z., and Su, H.L., The Signals of FGFs on the neurogenesis of embryonic stem cells, J. Biom. Sci., 2010, vol. 17, p. 33.

    Article  Google Scholar 

  • Chen, I., He, D.M., and Zhang, Y., The Differentiation of human placenta-derived mesenchymal stem cells into dopaminergic cells in vitro, Cell Mol. Diol. Lett., 2009, vol. 14, pp. 528–536.

    Article  CAS  Google Scholar 

  • da Silva Meirelles, L., Chagastelles, P.C., and Nardi, N.B., Mesenchymal stem cells reside in virtually all post-natal organs and tissues, J. Cell Sci., 2006, vol. 119, pp. 2204–2213.

    Article  PubMed  Google Scholar 

  • di Summa, P.G., Kalbermatten, D.F., Raffoul, W., Terenghi, G., and Kingham, P.J., Extracellular matrix molecules enhance the neurotrophic effect of Schwann cell-like differentiated adipose-derived stem cells and increase cell survival under stress conditions, Tissue Eng. Part. A, 2013, vol. 19, pp. 368–379.

    Article  PubMed  Google Scholar 

  • Dmitrieva, R.I., Minullina, I.R., Bilibina, A.A., Tarasova, O.V., Anisimov, S.V., and Zaritskey, A.Y., Bone marrow- and subcutaneous adipose tissue-derived mesenchymal stem cells: differences and similarities, Cell Cycle, 2012, vol. 11, pp. 377–383.

    Article  PubMed  CAS  Google Scholar 

  • Dominici, M., Le, Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. the international society for cellular therapy position statement, Cytotherapy, 2006, vol. 8, pp. 315–317.

    Article  PubMed  CAS  Google Scholar 

  • Gang, E.J., Bosnakovski, D., Figueiredo, C.A., Visser, J.W., and Perlingeiro, R.C., SSEA-4 identifies mesenchymal stem cells from bone marrow, Blood, 2007, vol. 109, pp. 1743–1751.

    Article  PubMed  CAS  Google Scholar 

  • Gargett, C.E. and Masuda, H., Adult stem cells in the endometrium, Mol. Hum. Reprod., 2010, vol. 16, pp. 818–834.

    Article  PubMed  CAS  Google Scholar 

  • Huang, E.J. and Reichardt, L.F., Neurotrophins: roles in neuronal development and function, Annu. Rev. Neurosci., 2001, vol. 24, pp. 677–736.

    Article  PubMed  CAS  Google Scholar 

  • Husein, K.S. and Thiemermann, C., Mesenchymal stromal cells: current understanding and clinical status, Stem Cells, 2010, vol. 28, pp. 585–596.

    Google Scholar 

  • Jang, S., Cho, H.H., Cho, Y.B., Park, J.S., and Jeong, H.S., Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin, BMC Cell Biol., 2010, vol. 16, pp. 11–25.

    Google Scholar 

  • Johnson, R.L., Riddle, R.D., Laufer, E., and Tabin, C., Sonic hedgehog: a key mediator of anterior-posterior patterning of the limb and dorso-ventral patterning of axial embryonic structures, Biochem. Soc. Trans., 1994, vol. 22, pp. 569–574.

    PubMed  CAS  Google Scholar 

  • Jori, F.P., Napolitano, M.A., Melone, M.A., Cipollaro, M., Cascino, A., Altucci, L., Peluso, G., Giordano, A., and Galderisi, U., Molecular pathways involved in neural in vitro differentiation of marrow stromal stem cells, J. Cell Biochem., 2005, vol. 94, pp. 645–655.

    Article  PubMed  CAS  Google Scholar 

  • Kang, S.K., Lee, D.H., Bae, Y.C., Kim, H.K., Baik, S.Y., and Jung, J.S., Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats, Exp. Neurol., 2003, vol. 183, pp. 355–366.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Â., Seo, J.H., Bubien, J.K., and Oh, Y.S., Differentiation of adult bone marrow stem cells into neuroprogenitor cells in vitro, Neuroreport, 2002, vol. 13, pp. 1185–1188.

    Article  PubMed  Google Scholar 

  • Kolpak, A., Zhang, J., and Bao, Z.Z., Sonic hedgehog has a dual effect on the growth of retinal ganglion axons depending on its concentration, J. Neurosci., 2005, vol. 25, pp. 3432–3441.

    Article  PubMed  CAS  Google Scholar 

  • Kozhukharova, I.V., Fridlyanskaya, I.I., Zemelko, V.I., Kovaleva, Z.V., Pugovkina, N.A., Alekseenko, L.L., Kharchenko, M.V., Aksenov, N.D., Shatrova, A.N.., Grinchuk, T.M., Anisimov, S.V., and Nikolsky, N.N., Generation of dopamine neurons from human embryonic stem cells in vitro, Cell Tiss. Biol., 2010, vol. 4, no. 5, pp. 411–418.

    Article  Google Scholar 

  • Lee, T.H. and Yoon, J.G., Intracerebral transplantation of human adipose tissue stromal cells after middle cerebral artery occlusion in rats, J. Clin. Neurosci., 2008, vol. 15, no. 8, pp. 907–912.

    Article  PubMed  Google Scholar 

  • Litingtung, Y. and Chiang, C., Control of SHH activity and signaling in the neural tube, Dev. Dyn., 2000, vol. 219, pp. 143–154.

    Article  PubMed  CAS  Google Scholar 

  • Long, X., Olszewski, M., Huang, W., and Kletzel, M., Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells, Stem Cells Dev., 2005, vol. 14, pp. 65–69.

    Article  PubMed  CAS  Google Scholar 

  • Lopatina, T.V., Kalinina, N.I., Revischin, A.V., Beme, A.A., Spirova, I.A., Pavlova, G.V., and Parfenova, E.V., Induction of neural differentiation of stromal cells of adipose tissue, Klet. Transplantol. Tkan. Inzhener., 2008, vol. 3, no. 4, pp. 50–55.

    Google Scholar 

  • Meng, X., Ichim, T.E., Zhong, J., Rogers, A., Yin, Z., Jackson, J., Wang, H., Ge, W., Bogin, V., Chan, K.W., Thébaud, B., and Riordan, N.H., Endometrial regenerative cells: a novel stem cell population, J. Transl. Med., 2007, vol. 5, pp. 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Molero, A.E., Gokhan, S., Gonzalez, S., Feig, J.L., Alexandre, L.C., and Mehler, M.F., Impairment of developmental stem cell-mediated striatal neurogenesis and pluripotency genes in a knock-in model of Huntington’s disease, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 21900–21905.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, M.P., Wang, H., Patel, A.N.., Kambhampati, S., Angle, N., Chan, K., Marleau, A.M., Pyszniak, A., Carrier, E., Ichim, T.E., et al., Allogeneic endometrial regenerative cells: an’ off the shelf solution’ for critical limb ischemia?, J. Transl. Med., 2008, vol. 6, pp. 45–52.

    Article  PubMed  Google Scholar 

  • Parker, A.M. and Katz, A.J., Adipose-derived stem cells for the regeneration of damaged tissues, Expert. Opin. Biol. Ther., 2006, vol. 6, pp. 567–578.

    Article  PubMed  CAS  Google Scholar 

  • Patel, A.N., Park, E., Kuzman, M., Benetti, F., Silva, F.J., and Allickson, J.G., Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation, Cell Transplant., 2008, vol. 17, pp. 303–311.

    Article  PubMed  Google Scholar 

  • Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R., Multilineage potential of adult human mesenchymal stem cells, Science, 1999, vol. 284, pp. 143–147.

    Article  PubMed  CAS  Google Scholar 

  • Prockop, D., Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms, Mol. Ther., 2009, vol. 17, pp. 939–946.

    Article  PubMed  CAS  Google Scholar 

  • Riekstina, U., Cakstina, I., Parfejevs, V., Hoogduijn, M., Jankovskis, G., Muiznieks, I., Muceniece, R., and Ancans, J., Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis, Stem Cell Rev., 2009, vol. 5, pp. 378–386.

    Article  PubMed  CAS  Google Scholar 

  • Schraufstatter, I.U., Discipio, R.G., and Khaldoyanidi, S., Mesenchymal stem cells and their microenvironment, Front. Biosci., 2011, vol. 17, pp. 2271–2288.

    Article  Google Scholar 

  • Scintu, F., Reali, C., Pillai, R., Badiali, M., Sanna, M.A., Argiolu, F., Ristaldi, M.S., and Sogos, V., Differentiation of human bone marrow stem cells into cells with a neural phenotype: diverse effects of two specific treatments, BMC Neurosci., 2006, vol. 16, pp. 7–14.

    Google Scholar 

  • Suri, S. and Schmidt, C.E., Cell-laden hydrogel constructs of hyaluronic acid, collagen, and laminin for neural tissue engineering, Tissue Eng. Part A, 2010, vol. 16, pp. 1703–1716.

    Article  PubMed  CAS  Google Scholar 

  • Thornell, L.E., Lindstöm, M., Renault, V., Klein, A., Mouly, V., Ansved, T., Butler-Browne, G., and Furling, D., Satellite cell dysfunction contributes to the progressive muscle atrophy in myotonic dystrophy type 1, Neuropathol. Appl. Neurobiol., 2009, vol. 35, pp. 603–613.

    Article  PubMed  Google Scholar 

  • Trzaska, K.A., Kuzhikandathil, E.V., and Ramashwar, P., Specification of a dopaminergic phenotype from adult human mesenchymal stem cells, Stem Cells, 2007, vol. 25, pp. 2797–2808.

    Article  PubMed  CAS  Google Scholar 

  • Wang, T.T., Tio, M., Lee, W., Beerheide, W., and Udolph, G., Neural differentiation of mesenchymal-like stem cells from cord blood is mediated by PKA, Biochem. Biophys. Res. Commun., 2007, vol. 357, pp. 1021–1027.

    Article  PubMed  CAS  Google Scholar 

  • Woodbury, D., Reynolds, A., and Black, I.B., Adult bone marrow stromal stem cells express germline, ectodermal, endodermal and mesodermal genes prior to neurogenesis, J. Neurosci. Res., 2002, vol. 96, pp. 908–917.

    Article  Google Scholar 

  • Zemelko, V.I., Grinchuk, T.M., Domnina, A.P., Artsybasheva, I.V., Zenin, V.V., Kirsanov, A.A., Bichevaya, N.K., Korsak, V.S., and Nikolsky, N.N., Multipotent mesenchymal stem cells of desquamated endometrium: isolation, characterization, and application as a feeder layer for maintenance of human embryonic stem cells, Cell Tiss. Biol., 2011, vol. 53, no. 12, pp. 919–929.

    CAS  Google Scholar 

  • Zhang, H.T., Liu, Z.L., Yao, X.Q., Yang, Z.J., and Xu, R.X., Neural differentiation ability of mesenchymal stromal cells from bone marrow and adipose tissue: a comparative study, Cytotherapy, 2012, vol. 14, pp. 1203–1214.

    Article  PubMed  CAS  Google Scholar 

  • Zigova, T., Pencea, V., Wiegand, S.J., and Luskin, M.B., Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb, Mol. Cell. Neurosci., 1998, vol. 11, pp. 234–245.

    Article  PubMed  CAS  Google Scholar 

  • Zwart, I., Hill, A.J., Girdlestone, J., Manca, M.F., Navarrete, R., Navarrete, C., and Jen, L.S., Analysis of neural potential of human umbilical cord blood-derived multipotent mesenchymal stem cells in response to a range of neurogenic stimuli, J. Neurosci Res., 2008, vol. 86, pp. 1902–1915.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Zemelko.

Additional information

Original Russian Text © V.I. Zemelko, I.B. Kozhukharova, L.L. Alekseenko, A.P. Domnina, G.F. Reshetnikova, M.V. Puzanov, R.I. Dmitrieva, T.M. Grinchuk, N.N. Nikolsky, S.V. Anisimov, 2013, published in Tsitologiya, Vol. 55, No. 2, 2013, pp. 101–110.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zemelko, V.I., Kozhukharova, I.B., Alekseenko, L.L. et al. Neurogenic potential of human mesenchymal stem cells isolated from bone marrow, adipose tissue and endometrium: a Comparative study. Cell Tiss. Biol. 7, 235–244 (2013). https://doi.org/10.1134/S1990519X13030140

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X13030140

Keywords

Navigation