Skip to main content
Log in

Azelnidipine Ameliorates Dementia in Streptozotocin Treated Rats: Interplay between Oxidative Stress and Calcium

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

Deregulation of brain Ca2+ homeostasis is linked with oxidative stress, mitochondrial dysfunction, neurodegeneration, loss of synaptic plasticity, and cholinergic deficits. Earlier chronic administration of calcium channel blockers (L-type CCBs) has afforded relief in Alzheimer’s disease (AD) symptoms. Azelnidipine (AZL) is a long duration L-type Ca2+ channel blocker recently included in anti-hypertensive therapy. The present study reveals the role of AZL in the management of ICV-STZ induced AD in rats. Wistar rats of either sex (aged 12–15 weeks and weight range 260–280 g) were divided into 6 groups in single blind fashion and stereotaxic surgery was performed. Streptozotocin (3 mg/kg) was injected (ICV) in five groups and one group was administered with ACSF. AZL was administered (1.5, 3 and 6 mg/kg; p.o.) to separate groups of ICV-STZ pre-treated rats for 14 successive days. Memory of rats was measured using elevated plus maze and novel object recognition task. After behavioral evaluation, the animals were sacrificed and whole brains were isolated for estimation of AChE activity, TBARS and GSH levels. ICV-STZ treatment increased the brain AChE activity, TBARS level, decreased GSH level, and thereby impaired the memory of rats. The Ca2+ antagonistic property of AZL attenuated the STZ induced derangement of biochemical parameters and resurrected the memory functions in rats. This study exhibited that long-term blockade of the L-type Ca2+ channels using azelnidipine mitigates AD type dementia owing to its neuroprotective and antioxidant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E.K., Jones, P.K., Ghanbari, H., Wataya, T., Shimohama, S., Chiba, S., Atwood, C.S., Petersen, R.B., and Smith, M.A., J. Neuropathol. Exp. Neurol., 2001, vol. 60, pp. 759–767.

    Article  CAS  PubMed  Google Scholar 

  2. Görlach, A., Bertram, K., Hudecova, S., and Krizanova, O., Redox Biol., 2015, vol. 6, pp. 260–271.

    PubMed  PubMed Central  Google Scholar 

  3. Hirai, K., Aliev, G., Nunomura, A., Fujioka, H., Russell, R.L., Atwood, C.S., Johnson, A.B., Kress, Y., Vinters, H.V., Tabaton, M., Shimohama, S., Cash, A.D., Siedlak, S.L., Harris, P.L., Jones, P.K., Petersen, R.B., Perry, G., and Smith, M.A., J. Neurosci., 2001, vol. 21, pp. 3017–3023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khachaturian, Z.S., Ann. N. Y. Acad. Sci., 1989, vol. 568, pp. 1–4.

    Article  CAS  PubMed  Google Scholar 

  5. Green, K.N. and LaFerla, F.M., Neuron, 2008, vol. 59, pp. 190–194.

    Article  CAS  PubMed  Google Scholar 

  6. Green, K.N., J. Cell. Mol. Med., 2009, vol. 13, pp. 2787–2799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berridge, M.J., Biochem. Soc. Trans., 2012, vol. 40, pp. 297–309.

    Article  CAS  PubMed  Google Scholar 

  8. Tabet, F., Savoia, C., Schiffrin, E.L., and Touyz, R.M., J. Cardiovasc. Pharmacol., 2004, vol. 44, pp. 200–208.

    Article  CAS  PubMed  Google Scholar 

  9. Brookes, P.S., Yoon, Y., Robotham, J.L., Anders, M.W., Sheu, S.S., Am. J. Physiol. Cell Physiol., 2004, vol. 287, pp. C817–C833.

    Article  CAS  PubMed  Google Scholar 

  10. Foskett, J.K. and Philipson, B., J. Mol. Cell Cardiol., 2015, vol. 78, pp. 3–8.

    Article  CAS  PubMed  Google Scholar 

  11. Seidlmayer, L.K., Juettner, V.V., Kettlewell, S., Pavlov, E.V., Blatter, L.A., and Dedkova, E.N., Cardiovasc. Res., 2015, vol. 106, pp. 237–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nimmrich, V. and Eckert, A., Br. J. Pharmacol., 2013, vol. 169, pp. 1203–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakano, K., Egashira, K., Ohtani, K., Gang, Z., Iwata, E., Miyagawa, M., and Sunagawa, K., Atherosclerosis, 2008, vol. 196, pp. 172–179.

    Article  CAS  PubMed  Google Scholar 

  14. Bagheri, M., Jahromi, B.M., Mirkhani, H., Solhjou, Z., Noorafshan, A., Zamani, A., and Amirghofran, Z., J. Surg. Res., 2011, vol. 169, pp. e101–e107.

    Article  CAS  PubMed  Google Scholar 

  15. Godfraind, T., Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2005, vol. 360, pp. 2259–2272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shinomiya, K., Mizushige, K., Fukunaga, M., Masugata, H., Ohmori, K., Kohno, M., and Senda, S., J. Int. Med. Res., 2004, vol. 32, pp. 170–175.

    Article  CAS  PubMed  Google Scholar 

  17. Yamagishi, S., Inagaki, Y., Nakamura, K., and Imaizumi, T., J. Cardiovasc. Pharmacol., 2004, vol. 43, pp. 724–730.

    Article  CAS  PubMed  Google Scholar 

  18. Batova, S., DeWever, J., Godfraind, T., Balligand, J.L., Dessy, C., and Feron, O., Cardiovasc. Res., 2006, vol. 71, pp. 478–485.

    Article  CAS  PubMed  Google Scholar 

  19. Kario, K., Sato, Y., Shirayama, M., Takahashi, M., Shiosakai, K., Hiramatsu, K., Komiya, M., and Shimada, K., Drugs R. D., 2013, vol. 13, pp. 63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, B.L., Zhang, Y.Z., Luo, J.Q., and Zhang, W., Ther. Clin. Risk Manag., 2015, vol. 11, pp. 309–318.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sharma, M. and Gupta, Y.K., Life Sci., 2002, vol. 71, pp. 2489–2498.

    Article  CAS  PubMed  Google Scholar 

  22. Paxinos, G., Watson, C.R., and Emson, P.C., J. Neurosci. Methods., 1980, vol. 3, pp. 129–149.

    Article  CAS  PubMed  Google Scholar 

  23. Kumar, M., and Bansal, N., Behav. Brain Res., 2018, vol. 351, pp. 4–16.

    Article  CAS  PubMed  Google Scholar 

  24. Lukic-Panin, V., Kamiya, T., Zhang, H., Hayashi, T., Tsuchiya, A., Sehara, Y., Deguchi, K., Yamashita, T., and Abe, K., Brain Res., 2007, vol. 1176, pp. 143–150.

    Article  CAS  PubMed  Google Scholar 

  25. Bansal, N, and Parle, M., J. Med. Food., 2010, vol. 13, pp. 1293–1300.

    Article  CAS  PubMed  Google Scholar 

  26. Shastry, R., Ullal, S.D., Karkala, S., Rai, S., and Gadgade, A., Indian J. Pharmacol., 2016, vol. 48, pp. 681–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Itoh, J., Nabeshima, T., and Kameyama, T., Psychopharmacology, 1990, vol. 101, pp. 27–33.

    Article  CAS  PubMed  Google Scholar 

  28. Reddy, D.S. and Kulkarni, S.K., Brain Res., 1998, vol. 799, pp. 215–229.

    Article  CAS  PubMed  Google Scholar 

  29. Vasudevan, M., and Parle, M., Pharm. Biol., 2007, vol. 45, pp. 267–273.

    Article  Google Scholar 

  30. Ennaceur, A. and Delacour, J., Behav. Brain Res., 1988, vol. 31, pp. 47–59.

    Article  CAS  PubMed  Google Scholar 

  31. Abada, Y.K., Nguyen, H.P., Schreiber, R., and Ellenbroek, B., PLoS One, 2013, vol. 8, p. e68584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ohkawa, H., Ohishi, N., and Yagi, K., Anal. Biochem., 1979, vol. 95, pp. 351–358.

    Article  CAS  PubMed  Google Scholar 

  33. Ellman, G.L., Arch. Biochem. Biophys., 1959, vol. 82, pp. 70–74.

    Article  CAS  PubMed  Google Scholar 

  34. Ellman, G.L., Courtney, K.D., Andres, V., and Featherstone, R.M., Biochem. Pharmacol., 1961, vol. 7, pp. 88-95.

    Article  CAS  PubMed  Google Scholar 

  35. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    CAS  PubMed  Google Scholar 

  36. Grieb, P., Mol. Neurobiol., 2016, vol. 53, pp. 1741–1752.

    Article  CAS  PubMed  Google Scholar 

  37. Ahn, C., An, B.S., and Jeung, E.B., Mol. Cell. Endocrinol., 2015, vol. 412, pp. 302–308.

    Article  CAS  PubMed  Google Scholar 

  38. Gutierres, J.M., Carvalho, F.B., Schetinger, M.R.C., Marisco, P., Agostinho, P., Rodrigues, M., Rubin, M.A., Schmatz, R., da Silva, C.R., de P Cognato, G., Farias, J.G., Signor, C., Morsch, V.M., Mazzanti, C.M., Bogo, M., Bonan, C.D., and Spanevello, R., Life Sci., 2014, vol. 96, pp. 7–17.

    Article  CAS  PubMed  Google Scholar 

  39. Correia, S.C., Santos, R.X., Santos, M.S., Casadesus, G., Lamanna, J.C., Perry, G., Smith, M.A., and Moreira, P.I., Curr. Alzheimer. Res., 2013, vol. 10, pp. 406–419.

    Article  CAS  PubMed  Google Scholar 

  40. Jayant, S., Sharma, B.M., and Sharma, B., Brain Res., 2016, vol. 1642, pp. 397–408.

    Article  CAS  PubMed  Google Scholar 

  41. Bradley-Whitman, M.A. and Lovell, M.A., Arch. Toxicol., 2015, vol. 89, pp. 1035–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ayala, A., Munoz, M.F., and Argüelles, S., Oxid. Med. Cell. Longev., 2014, pp. 360–438.

  43. Jurma, O.P., Hom, D.G., and Andersen, J.K., Free Radic. Biol. Med., 1997, vol. 23, pp. 1055–1066.

    Article  CAS  PubMed  Google Scholar 

  44. Robillard, J.M., Gordon, G.R., Choi, H.B., Christie, B.R., and MacVicar, B.A., PLoS One, 2011, vol. 6, p. e20676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abramov, A.Y., Canevari, L., and Duchen, M.R., J. Neurosci., 2003, vol. 23, pp. 5088–5095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chakroborty, S., and Stutzmann, G.E., Eur. J. Pharmacol., 2014, vol. 739, pp. 83–95.

    Article  CAS  PubMed  Google Scholar 

  47. Forette, F., Seux, M.L., Staessen, J.A., Thijs, L., Babarskiene, M.R., Babeanu, S., Bossini, A., Fagard, R., Gil-Extremera, B., Laks, T., Kobalava, Z., Sarti, C., Tuomilehto, J., Vanhanen, H., Webster, J., Yodfat, Y., Birkenhäger, W.H., Arch. Intern. Med., 2002, vol. 162, pp. 2046–2052.

    Article  PubMed  Google Scholar 

  48. Veng, L.M., Mesches, M.H., and Browning, M.D., Mol. Brain Res., 2003, vol. 110, pp. 193–202.

    Article  CAS  PubMed  Google Scholar 

  49. Anekonda, T.S., and Quinn, J.F., Biochim. Biophys. Acta, 2011, vol. 1812, pp. 1584–1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McKinney, M. and Jacksonville, M.C., Biochem. Pharmacol., 2005, vol. 70, pp. 1115–1124.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to the A.S.B.A.S.J.S.M. College of Pharmacy, (Ropar) for providing the necessary research facility.

Funding

No external funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Bansal.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Ethical approval. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pardeep Singh, Kumar, M. & Bansal, N. Azelnidipine Ameliorates Dementia in Streptozotocin Treated Rats: Interplay between Oxidative Stress and Calcium. Neurochem. J. 13, 274–282 (2019). https://doi.org/10.1134/S1819712419030139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712419030139

Keywords:

Navigation