Skip to main content
Log in

The Expression Pattern and Clinical Significance of Lysyl Oxidase Family in Gliomas

  • BIOCHEMISTRY, BIOPHYSICS, AND MOLECULAR BIOLOGY
  • Published:
Doklady Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

LOX (Lysyl oxidase) family participates in the catalysis of collagen and elastin to maintain ECM homeostasis. Glioma is the most common primary brain tumor and LOX family has not been systemic studied in glioma. In this study, we found LOX family members are upregulated expressed in gliomas samples. A protein-protein interaction network (PPIN) was construct to visualize and understand the differential expression pattern, as well as functional annotation, for LOX family and their interacting proteins, which involved in collagen fibril organization and MAPK signaling pathway. Through subcellular localization distribution, the LOX family members distribute both intracellular and extracellular. All five LOX members are consistently significantly correlate with dendritic cell both in immune infiltrate of GBM and LGG. Survival analysis showed that high expression of LOX family is associated with a poor prognosis of gliomas patients. These analyses provide important clues to identify the potential biological roles for LOX family in gliomas, which might serve as diagnosis markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Grant, R., Kolb, L., and Moliterno, J., CNS Oncol., 2014, vol. 3, no. 2, pp. 123–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Safdie, F., Brandhorst, S., Wei, M., et al., PLoS One, 2012, vol. 7, no. 9, p. e44603.

  3. Chammas, M., Saadeh, F., Maaliki, M., et al., J. Clin. Neurol., 2019, vol. 15, no. 1, pp. 1–8.

    Article  PubMed  Google Scholar 

  4. Li, T., Wu, C., Gao, L., et al., Oncotarget, 2018, vol. 9, no. 28, pp. 20156–20164.

    Article  PubMed  PubMed Central  Google Scholar 

  5. da Silva, R., Uno, M., Marie, S.K., et al., PLoS One, 2015, vol. 10, no. 3, p. e0119781.

  6. Laczko, R., Szauter, K.M., Jansen, M.K., et al., Neuropathol. Appl. Neurobiol., 2007, vol. 33, no. 6, pp. 631–643.

    Article  CAS  PubMed  Google Scholar 

  7. Du, X.G. and Zhu, M.J., Onco Targets Ther., 2018, vol. 11, pp. 2699–2708.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Du, Z., Xia, Q., Wu, B., et al., Am. J. Transl. Res., 2019, vol. 11, no. 5, pp. 2683–2705.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Du, Z., Wu, B., Xia, Q.Y., et al., Brain Res., 2019, vol. 1720, p. 146304.

  10. Assenov, Y., Ramirez, F., Schelhorn, S.E., et al., Bioinformatics, 2008, vol. 24, no. 2, pp. 282–284.

    Article  CAS  PubMed  Google Scholar 

  11. Sun, H., Zou, H.Y., Cai, X.Y.H.F., et al., DNA Cell Biol., 2020, vol. 39, no. 7, pp. 1228–1242.

    Article  CAS  PubMed  Google Scholar 

  12. Wu, B., Li, C., Du, Z., et al., Sci. Rep., 2014, vol. 4, p. 5403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Isserlin, R., Merico, D., Voisin, V., et al., F1000Res, 2014, vol. 3, p. 141.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huang, W., da Sherman, B.T., and Lempicki, R.A., Nat. Protoc., 2009, vol. 4, no. 1, pp. 44–57.

    Article  CAS  PubMed  Google Scholar 

  15. Li, T., Fu, J., Zeng, Z., et al., Nucleic Acids Res., 2020, vol. 48, no. w1, pp. W509–W514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Camp, R.L., Dolled-Filhart, M., and Rimm, D.L., Clin. Cancer Res., 2004, vol. 10, no. 21, pp. 7252–7259.

    Article  CAS  PubMed  Google Scholar 

  17. Verhaak, R.G., Hoadley, K.A., Purdom, E., et al., Cancer Cell, 2010, vol. 17, no. 1, pp. 98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chandrashekar, D.S., Bashel, B., Balasubramanya, S.A.H., et al., Neoplasia, 2017, vol. 19, no. 8, pp. 649–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Loo, L.H., Laksameethanasan, D., and Tung, Y.L., PLoS Comput. Biol., 2014, vol. 10, no. 3, p. e1003504.

  20. Barker, H.E., Cox, T.R., and Erler, J.T., Nat. Rev. Cancer, 2012, vol. 12, no. 8, pp. 540–552.

    Article  CAS  PubMed  Google Scholar 

  21. Zeltz, C., Pasko, E., Cox, T.R., et al., Cancers (Basel), 2019, vol. 11, no. 5, p. 705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wen, B., Xu, L.Y., and Li, E.M., Biochim. Biophys. Acta, Rev. Cancer, 2020, vol. 1874, no. 2, p. 188435.

  23. Kasashima, H., Yashiro, M., Okuno, T., et al., Digestion, 2018, vol. 98, no. 4, pp. 238–248.

    Article  CAS  PubMed  Google Scholar 

  24. Kielosto, M., Eriksson, J., Nummela, P., et al., Oncotarget, 2018, vol. 9, no. 102, pp. 37733–37752.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li, R.K, Zhao, W.Y., Fang, F., et al., Cancer Res. Clin. Oncol., 2015, vol. 141, no. 2, pp. 269–281.

    CAS  Google Scholar 

  26. Syafrizayanti, C., Betzen, J., Hoheisel, D., et al., Expert Rev. Proteomics, 2014, vol. 11, no. 1, pp. 107–120.

    Article  CAS  PubMed  Google Scholar 

  27. Bosque, G., Folch-Fortuny, A., Pico, J.A., et al., BMC Syst. Biol., 2014, vol. 8, p. 129.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yu, C.S., Cheng, C.W., Su, W.C., et al., PLoS One, 2014, vol. 9, no. 6, p. e99368.

  29. Okkelman, I.A., Sukaeva, A.Z., Kirukhina, E.V., et al., Cell Tissue Res., 2014, vol. 358, no. 2, pp. 481–489.

    Article  CAS  PubMed  Google Scholar 

  30. Cebria-Costa, J.P., Pascual-Reguant, L., Gonzalez-Perez, A., et al., Oncogene, 2020, vol. 39, no. 1, pp. 79–121.

    Article  CAS  PubMed  Google Scholar 

  31. Ma, L., Huang, C., Wang, X.J., et al., Mol. Cell, 2017, vol. 65, no. 2, pp. 296–309.

    Article  CAS  PubMed  Google Scholar 

  32. Xie, W., Huang, P., Wu, B., et al., Amino Acids, 2019, vol. 51, no. 5, pp. 813–828.

    Article  CAS  PubMed  Google Scholar 

  33. Butcher, D.T., Alliston, T., and Weaver, V.M., Nat. Rev. Cancer, 2009, vol. 9, no. 2, pp. 108–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Levental, K.R., Yu, H., Kass, L., et al., Cell, 2009, vol. 139, no. 5, pp. 891–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Palucka, K. and Banchereau, J., Nat. Rev. Cancer, 2012, vol. 12, no. 4, pp. 265–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schaller, T.H. and Sampson, J.H., Expert Rev. Vaccines, 2017, vol. 16, no. 1, pp. 27–36.

    Article  CAS  PubMed  Google Scholar 

  37. Huang, S.P., Chiou, J., Jan, Y.H., et al., Biochem. Biophys. Res. Commun., 2018, vol. 501, no. 3, pp. 619–627.

    Article  CAS  PubMed  Google Scholar 

  38. Lvu, W., Fei, X., and Chen, C., Biosci. Rep., 2020, vol. 40, no. 8.

  39. Kannan, K., Amariglio, N., Rechavi, G., et al., Oncogene, 2001, vol. 20, no. 18, pp. 2225–2234.

    Article  CAS  PubMed  Google Scholar 

  40. Rost, T., Pyritz, V., Rathcke,I. O., et al., Anticancer Res., 2003, vol. 23, no. 2B, pp. 1565–1573.

    CAS  PubMed  Google Scholar 

  41. Uzel, M.I., Shih, S.D. Gross, H., et al., J. Bone Miner. Res., 2000, vol. 15, no. 6, pp. 1189–1197.

    Article  CAS  PubMed  Google Scholar 

  42. Peinado, H., Moreno-Bueno, G., Hardisson, D., et al., Cancer Res, 2008, vol. 68, no. 12, pp. 4541–4550.

    Article  CAS  PubMed  Google Scholar 

  43. Fong, S.F., Dietzsch, E., Fong, K.S., et al., Genes Chromosomes Cancer, 2007, vol. 46, no. 7, pp. 644–655.

    Article  CAS  PubMed  Google Scholar 

  44. Peng, L., Ran, Y.L., Hu, H., et al., Carcinogenesis, 2009, vol. 30, no. 10, pp. 1660–1669.

    Article  CAS  PubMed  Google Scholar 

  45. Ruckert, F., Joensson, P., Saeger, H.D., et al., Int. J. Colorectal Dis., 2010, vol. 25, no. 3, pp. 303–311.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by Grants from the National Natural Science Foundation of China (no. 81672473), the Science and Technology Program of Guangdong (2017A030313181).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Zepeng Du, Enmin Li and Bingli Wu; Methodology and Investigation, Weijie Xie, Zhongte Peng, Xiao Zhou, Qiaoxi Xia, Mantong Chen, Xiaoqi Zheng and Hong Sun; Project administration, Haiying Zou and Liyan Xu; Writing-original draft, Weijie Xie. All authors have read and agreed to the published version of the manuscript.

AVAILABILITY OF DATA AND MATERIALS

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Corresponding authors

Correspondence to Enmin Li or Bingli Wu.

Ethics declarations

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Peng, Z., Zhou, X. et al. The Expression Pattern and Clinical Significance of Lysyl Oxidase Family in Gliomas. Dokl Biochem Biophys 510, 132–143 (2023). https://doi.org/10.1134/S1607672922600269

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1607672922600269

Keywords:

Navigation