Skip to main content
Log in

Spatiotemporal Pattern Formation in a Ring of Chua’s Oscillators

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

In the present work the spontaneous dynamics of a ring of \(N\) Chua’s oscillators, mutually coupled through a resistor \(R_{c}\) in a nearest-neighbor configuration, is investigated numerically for different strengths of the coupling. A transition from periodic to chaotic global dynamics is observed when the coupling decreases below a critical value and complex patterns in the spatiotemporal dynamics of the ring emerge for a small coupling interval after the transition to chaos. The recovered behavior, as well as the value of the critical threshold, appears to be independent of the size of the ring. We also propose an interpretation of this property, which relates the regular synchronized dynamics of the ring to the dynamics of the isolated oscillator. Finally, for the ring of the coupled oscillator, a theoretical wave dispersion relation is calculated and successfully compared with the results of the numerical simulations, analyzed by classical techniques adopted for turbulent flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pikovsky, A. S., Rosenblum, M. G., and Kurths, J., Synchronization in a Population of Globally Coupled Chaotic Oscillators, Europhys. Lett., 1996, vol. 34, no. 3, pp. 165–170.

    Article  Google Scholar 

  2. Fu, C., Lin, W., Huang, L., and Wang, X., Synchronization Transition in Networked Chaotic Oscillators: The Viewpoint from Partial Synchronization, Phys. Rev. E, 2014, vol. 89, no. 5, 052908, 11 pp.

    Article  Google Scholar 

  3. Moskalenko, O. I., Koronovskii, A. A., Hramov, A. E., and Boccaletti, S., Generalized Synchronization in Mutually Coupled Oscillators and Complex Networks, Phys. Rev. E, 2012, vol. 86, no. 3, 036216, 9 pp.

    Article  Google Scholar 

  4. Bilotta, E., Chiaravalloti, F., and Pantano, P., Spontaneous Synchronization in Two Mutually Coupled Memristor-Based Chua’s Circuits: Numerical Investigations, Math. Probl. Eng., 2014, vol. 2014, Art. ID 594962, 15 pp.

    Article  MATH  Google Scholar 

  5. Pecora, L. M., Synchronization Conditions and Desynchronizing Patterns in Coupled Limit-Cycle and Chaotic Systems, Phys. Rev. E, 1998, vol. 58, no. 1, pp. 347–360.

    Article  MathSciNet  Google Scholar 

  6. Saxena, G., Prasad, A. and Ramaswamy, R., Amplitude Death: The Emergence of Stationarity in Coupled Nonlinear Systems, Phys. Rep., 2012, vol. 521, no. 5, pp. 205–228.

    Article  Google Scholar 

  7. Mariño, I. P., Pérez Muñuzuri, V., and Matías, M. A., Desynchronization Transitions in Rings of Coupled Chaotic Oscillators, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1998, vol. 8, no. 8, pp. 1733–1738.

    Article  MATH  Google Scholar 

  8. Yanchuk, S., Maistrenko, Yu., and Mosekilde, E., Partial Synchronization and Clustering in a System of Diffusively Coupled Chaotic Oscillators, Math. Comput. Simulation, 2001, vol. 54, no. 6, pp. 491–508.

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhuravlev, M. O., Koronovskii, A. A., Moskalenko, O. I., Ovchinnikov, A. A., and Hramov, A. E., Ring Intermittency near the Boundary of the Synchronous Time Scales of Chaotic Oscillators, Phys. Rev. E, 2011, vol. 83, no. 2, 027201, 4 pp.

    Article  Google Scholar 

  10. Ogorzalek, M. J., Galias, Z., Dabrowski, A. M., and Dabrowski, W. R., Chaotic Waves and Spatio-Temporal Patterns in Large Arrays of Doubly-Coupled Chua’s Circuits, IEEE Trans. Circuits Syst. I. Fundam. Theory Appl., 1995, vol. 42, no. 10, pp. 706–714.

    Article  Google Scholar 

  11. Zhang, Y., Hu, G., and Cerdeira, H. A., How Does a Periodic Rotating Wave Emerge from High-Dimensional Chaos in a Ring of Coupled Chaotic Oscillators?, Phys. Rev. E, 2001, vol. 64, no. 3, 037203, 4 pp.

    Article  Google Scholar 

  12. Zhang, X., Fu, M., Xiao, J., and Hu, G., Self-Organization of Chaos Synchronization and Pattern Formation in Coupled Chaotic Oscillators, Phys. Rev. E, 2006, vol. 74, no. 1, 015202, 4 pp.

    Article  Google Scholar 

  13. Muñuzuri, A. P., Pérez-Muñuzuri, V., Gómez-Gesteira, M., Chua, L. O., and Pérez-Villar, V., Spatiotemporal Structures in Discretely-Coupled Arrays of Nonlinear Circuits: A Review, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1995, vol. 5, no. 1, pp. 17–50.

    Article  MATH  Google Scholar 

  14. Wang, J.-W. and Chen, A.-M., Partial Synchronization in Coupled Chemical Chaotic Oscillators, J. Comput. Appl. Math., 2010, vol. 233, no. 8, pp. 1897–1904.

    Article  MathSciNet  MATH  Google Scholar 

  15. Bodale, I. and Oancea, V. A., Chaos Control for Willamowski – Rössler Model of Chemical Reactions, Chaos Solitons Fractals, 2015, vol. 78, pp. 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  16. Minati, L., Experimental Synchronization of Chaos in a Large Ring of Mutually Coupled Single-Transistor Oscillators: Phase, Amplitude, and Clustering Effects, Chaos, 2014, vol. 24, no. 4, 043108, 14 pp.

    Article  MathSciNet  Google Scholar 

  17. Kamdoum Tamba, V., Fotsin, H. B., Kengne, J., Kapche Tagne, F., and Talla, P. K., Coupled Inductors-Based Chaotic Colpitts Oscillators: Mathematical Modeling and Synchronization Issues, Eur. Phys. J. Plus, 2015, vol. 130, Art. 137, 18 pp.

    Article  Google Scholar 

  18. DeShazer, D. J., Breban, R., Ott, E., and Roy, R., Detecting Phase Synchronization in a Chaotic Laser Array, Phys. Rev. Lett., 2001, vol. 87, no. 4, 044101, 4 pp.

    Article  MATH  Google Scholar 

  19. Chian, A. C. L., Nonlinear Dynamics and Chaos in Macroeconomics, Int. J. Theor. Appl. Finance, 2000, vol. 3, no. 3, p. 601.

    Article  Google Scholar 

  20. Volos, C. K., Kyprianidis, I. M., and Stouboulos, I. N., Synchronization Phenomena in Coupled Nonlinear Systems Applied in Economic Cycles, WSEAS Trans. Systems, 2012, vol. 11, no. 12, pp. 681–690.

    Google Scholar 

  21. Blasius, B. and Stone, L., Chaos and Phase Synchronization in Ecological Systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2000, vol. 10, no. 10, pp. 2361—2380.

    Article  MATH  Google Scholar 

  22. Nana, B. and Woafo, P., Synchronized States in a Ring of Four Mutually Coupled Oscillators and Experimental Application to Secure Communications, Commun. Nonlinear Sci. Numer. Simul., 2011, vol. 16, no. 4, pp. 1725–1733.

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, J., Jiao, L., Wu, J., and Wang, X., Projective Synchronization with Different Scale Factors in a Driven-Response Complex Network and Its Application in Image Encryption, Nonlinear Anal. Real World Appl., 2010, vol. 11, no. 4, pp. 3045–3058.

    Article  MATH  Google Scholar 

  24. Breve, F. A., Zhao, L., Quiles, M. G., and Macau, E. E., Chaotic Phase Synchronization and Desynchronization in an Oscillator Network for Object Selection, Neural Netw., 2009, vol. 22, nos. 5–6, pp. 728–737.

    Article  Google Scholar 

  25. Zhao, L., Cupertino, T. H., and Bertini, J. R., Jr., Chaotic Synchronization in General Network Topology for Scene Segmentation, Neurocomputing, 2008, vol. 71, no. 16–18, pp. 3360–3366.

    Article  Google Scholar 

  26. Abdechiri, M., Faez, K., Amindavar, H., and Bilotta, E., The Chaotic Dynamics of High-Dimensional Systems, Nonlinear Dynam., 2017, vol. 87, no. 4, pp. 2597–2610.

    Article  MathSciNet  Google Scholar 

  27. Abdechiri, M., Faez, K., Amindavar, H., and Bilotta, E., Chaotic Target Representation for Robust Object Tracking, Signal Process. Image Commun., 2017, vol. 54, no. C, pp. 23–35.

    Article  Google Scholar 

  28. Bilotta, E., Pantano, P., and Vena, S., Speeding Up Cellular Neural Network Processing Ability by Embodying Memristors, IEEE Trans. Neural Netw. Learn. Syst., 2017, vol. 28, no. 5, pp. 1228–1232.

    Article  Google Scholar 

  29. Yu, H. and Peng, J., Chaotic Synchronization and Control in Nonlinear-Coupled Hindmarsh – Rose Neural Systems, Chaos Solitons Fractals, 2006, vol. 29, no. 2, pp. 342–348.

    Article  MathSciNet  MATH  Google Scholar 

  30. Chen, L., Qiu, C., Huang, H., Qi, G., and Wang, H., Coevolution of Synchronous Activity and Connectivity in Coupled Chaotic Oscillators, Phys. Rev. E, 2010, vol. 82, no. 5, 056115, 5 pp.

    Article  Google Scholar 

  31. Wang, Z. and Shi, X., Lag Synchronization of Multiple Identical Hindmarsh – Rose Neuron Models Coupled in a Ring Structure, Nonlinear Dynam., 2010, vol. 60, no. 3, pp. 375–383.

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, Z., Jiang, Y., and Li, H., Synchronization of Multiple Bursting Neurons Ring Coupled via Impulsive Variables, Complexity, 2015, vol. 21, no. 2, pp. 29–37.

    Article  MathSciNet  Google Scholar 

  33. Zhang, J. and Liao, X., Synchronization and Chaos in Coupled Memristor-Based FitzHugh – Nagumo Circuits with Memristor Synapse, AEU-Int. J. Electron. C., 2017, vol. 75, pp. 82–90.

    Article  Google Scholar 

  34. Pecora, L. M. and Carroll, Th. L., Synchronization in Chaotic Systems, Phys. Rev. Lett., 1990, vol. 64, no. 8, pp. 821–824.

    Article  MathSciNet  MATH  Google Scholar 

  35. Fedele, G., Ferrise, A., and Chiaravalloti, F., Uncertain Master-Slave Synchronization with Implicit Minimum Saturation Level, Appl. Math. Model., 2016, vol. 40, no. 2, pp. 1193–1198.

    Article  MathSciNet  MATH  Google Scholar 

  36. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., and Zhou, C. S., The Synchronization of Chaotic Systems, Phys. Rep., 2002, vol. 366, nos. 1–2, pp. 1–101.

    Article  MathSciNet  MATH  Google Scholar 

  37. Perlikowski, P., Yanchuk, S., Wolfrum, M., Stefanski, A., Mosiolek, P., and Kapitaniak, T., Routes to Complex Dynamics in a Ring of Unidirectionally Coupled Systems, Chaos, 2010, vol. 20, no. 1, 013111, 10 pp.

    Article  MathSciNet  Google Scholar 

  38. Horikawa, Y. and Kitajima, H., Transient Chaotic Rotating Waves in a Ring of Unidirectionally Coupled Symmetric Bonhoeffer – van der Pol Oscillators near a Codimension-Two Bifurcation Point, Chaos, 2012, vol. 22, no. 3, 033115, 12 pp.

    Article  MathSciNet  MATH  Google Scholar 

  39. Bilotta, E., Chiaravalloti, F., and Pantano, P., Synchronization and Waves in a Ring of Diffusively Coupled Memristor-Based Chua’s Circuits, Acta Appl. Math., 2014, vol. 132, pp. 83–94.

    Article  MathSciNet  MATH  Google Scholar 

  40. Takamatsu, A., Tanaka, R., Yamada, H., Nakagaki, T., Fujii, T., and Endo, I., Spatiotemporal Symmetry in Rings of Coupled Biological Oscillators of Physarum Plasmodial Slime Mold, Phys. Rev. Lett., 2001, vol. 87, no. 7, 078102, 4 pp.

    Article  Google Scholar 

  41. Ermentrout, G. B., The Behavior of Rings of Coupled Oscillators, J. Math. Biol., 1985, vol. 23, no. 1, pp. 55–74.

    Article  MathSciNet  MATH  Google Scholar 

  42. Enjieu Kadji, H. G., Chabi Orou, J. B., and Woafo, P., Synchronization Dynamics in a Ring of Four Mutually Coupled Biological Systems, Commun. Nonlinear Sci. Numer. Simul., 2008, vol. 13, no. 7, pp. 1361–1372.

    Article  MathSciNet  MATH  Google Scholar 

  43. Perlikowski, P., Yanchuk, S., Popovych, O. V., and Tass, P. A., Periodic Patterns in a Ring of Delay-Coupled Oscillators, Phys. Rev. E (3), 2010, vol. 82, no. 3, 036208, 12 pp.

    Article  MathSciNet  Google Scholar 

  44. Jaros, P., Perlikowski, P., and Kapitaniak, T., Synchronization and Multistability in the Ring of Modified Rössler Oscillators, Eur. Phys. J. Spec. Top., 2015, vol. 224, pp. 1541–1552.

    Article  Google Scholar 

  45. Senthilkumar, D. V., Muruganandam, P., Lakshmanan, M., and Kurths, J., Scaling and Synchronization in a Ring of Diffusively Coupled Nonlinear Oscillators, Phys. Rev. E (3), 2010, vol. 81, no. 6, 066219, 11 pp.

    Article  MathSciNet  Google Scholar 

  46. Bilotta, E.,Chiaravalloti, F., and Pantano, P., Complexity and Emergence of Wave Dynamics in a Chain of Sequentially Interconnected Chua Circuits, Mech. Res. Commun., 2015, vol. 68, pp. 9–17.

    Article  Google Scholar 

  47. Matías, M. A., Pérez-Muñuzuri, V.,d Lorenzo, M. N., Mariño, I. P., and Pérez-Villar, V., Observation of a Fast Rotating Wave in Rings of Coupled Chaotic Oscillators, Phys. Rev. Lett., 1997, vol. 78, no. 2, pp. 219–222.

    Article  Google Scholar 

  48. Matías, M. A. and Güémez, J., Transient Periodic Rotating Waves and Fast Propagation of Synchronization in Linear Arrays of Chaotic Systems, Phys. Rev. Lett., 1998, vol. 81, no. 19, pp. 4124–4127.

    Article  Google Scholar 

  49. Horikawa, Y., Metastable and Chaotic Transient Rotating Waves in a Ring of Unidirectionally Coupled Bistable Lorenz Systems, Phys. D, 2013, vol. 261, pp. 8–18.

    Article  MathSciNet  MATH  Google Scholar 

  50. Abrams, D. M. and Strogatz, S. H., Chimera States for Coupled Oscillators, Phys. Rev. Lett., 2004, vol. 93, no. 17, 174102, 4 pp.

    Article  Google Scholar 

  51. Omel’chenko, O., Wolfrum, M., and Maistrenko, Yu., Chimera States as Chaotic Spatiotemporal Patterns, Phys. Rev. E, 2010, vol. 81, no. 6, 065201(R), 4 pp.

    Article  MathSciNet  Google Scholar 

  52. Chua, L. O., The Genesis of Chua’s Circuit, Arch. Elektron. Übertrag., 1992, vol. 46, no. 4, pp. 250–257.

    Google Scholar 

  53. Wu, H., Jiang, H., and Hou, Z., Spatiotemporal Dynamics on Small-World Neural Networks: The Roles of Two Types of Time-Delayed Coupling, Chaos Solitons Fractals, 2011, vol. 44, no. 10, pp. 836-844.

    Article  Google Scholar 

  54. Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S. J., and Robert, P., Universality of Solar-Wind Turbulent Spectrum from MHD to Electron Scales, Phys. Rev. Lett., 2009, vol. 103, no. 16, 165003, 4 pp.

    Article  Google Scholar 

  55. Sahraoui, F., Goldstein, M. L., Robert, P., and Khotyaintsev, Yu. V., Evidence of a Cascade and Dissipation of Solar-Wind Turbulence at the Electron Gyroscale, Phys. Rev. Lett., 2009, vol. 102, no. 23, 231102, 4 pp.

    Article  Google Scholar 

  56. Valentini, F., Perrone, D., and Veltri, P., Short-Wavelength Electrostaic Fluctuations in the Solar Wind, Astrophys. J., 2011, vol. 739, no. 1, Art. 54, 7 pp.

    Article  Google Scholar 

  57. Bruno, R. and Carbone, V., The Solar Wind As a Turbulence Laboratory, Living Rev. Sol. Phys., 2013, vol. 10, no. 1, Art. ID 2, 208 pp.

    Google Scholar 

  58. Valentini, F., Perrone, D., Stabile, S., Pezzi, O., Servidio, S., De Marco, R., Marcucci, F., Bruno, R., Lavraud, B., De Keyser, J., Consolini, G., Brienza, D., Sorriso-Valvo, L., Retinò, A., Vaivads, A., Salatti, M., and Veltri, P., Differential Kinetic Dynamics and Heating of Ions in the Turbulent Solar Wind, New J. Phys., 2016, vol. 18, no. 12, 125001, 17 pp.

    Article  Google Scholar 

  59. Pezzi, O., Camporeale, E., and Valentini, F., Collisional Effects on the Numerical Recurrence in Vlasov – Poisson Simulations, Phys. Plasmas, 2016, vol. 23, no. 2, 022103, 12 pp.

    Article  Google Scholar 

  60. Pucci, F., Vásconez, Ch. L., Pezzi, O., Servidio, S., Valentini, F., Matthaeus, W. H., and Veltri, P., , J. Geophys. Res. Space Phys., 2016, vol. 121, no. 2, pp. 1024–1045.

  61. Pezzi, O., Parashar, T. N., Servidio, S., Valentini, F., Vásconez, Ch. L., Yang, Y., Malara, F., Matthaeus, W. H., and Veltri, P., Revisiting a Classic: The Parker – Moffatt Problem, Astrophys. J., 2017, vol. 834, no. 2, Art. 166, 6 pp.

    Article  Google Scholar 

  62. Pezzi, O., Parashar, T. N., Servidio, S., Valentini, F., Vásconez, Ch. L., Yang, Y., Malara, F., Matthaeus, W. H., and Veltri, P., Colliding Alfvénic Wave Packets in Magnetohydrodynamics, Hall and Kinetic Simulations, J. Plasma Phys., 2017, vol. 83, no. 1, 705830108, 16 pp.

    Article  Google Scholar 

  63. Pezzi, O., Malara, F., Servidio, S., Valentini, F., Parashar, T. N., Matthaeus, W. H., and Veltri, P., Turbulence Generation during the Head-On Collision of Alfvénic Wave Packets, Phys. Rev. E, 2017, vol. 96, no. 2, 023201, 5 pp.

    Article  Google Scholar 

  64. Wu, S., Chua’s Circuit Family, Proc. IEEE, 1987, vol. 75, no. 8, pp. 1022–1032.

    Article  Google Scholar 

  65. Zhong, G. Q., Implementation of Chua’s Circuit with a Cubic Nonlinearity, IEEE Trans. Circuits Syst. I. Fundam. Theory Appl., 1994, vol. 41, no. 12, pp. 934–941.

    Article  Google Scholar 

  66. Shampine, L. F. and Reichelt, M. W., The MATLAB ODE Suite: Dedicated to C. William Gear on the Occasion of His 60th Birthday, SIAM J. Sci. Comput., 1997, vol. 18, no. 1, pp. 1–22.

    Article  MathSciNet  Google Scholar 

Download references

Funding

O. P. and F. V. have been supported by the Agenzia Spaziale Italiana under Contract No. ASI-INAF 2015-039-R.O.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giuseppe Alì, Eleonora Bilotta, Francesco Chiaravalloti, Pietro Pantano, Oreste Pezzi, Carmelo Scuro or Francesco Valentini.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

34C28, 34C23, 37G15,65Pxx

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alì, G., Bilotta, E., Chiaravalloti, F. et al. Spatiotemporal Pattern Formation in a Ring of Chua’s Oscillators. Regul. Chaot. Dyn. 26, 717–731 (2021). https://doi.org/10.1134/S1560354721060095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354721060095

Keywords

Navigation