Skip to main content
Log in

Stability of the Relative Equilibria in the Two-body Problem on the Sphere

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We consider the 2-body problem in the sphere \(\mathbb{S}^{2}\). This problem is modeled by a Hamiltonian system with \(4\) degrees of freedom and, following the approach given in [4], allows us to reduce the study to a system of \(2\) degrees of freedom. In this work we will use theoretical tools such as normal forms and some nonlinear stability results on Hamiltonian systems for demonstrating a series of results that will correspond to the open problems proposed in [4] related to the nonlinear stability of the relative equilibria. Moreover, we study the existence of Hamiltonian pitchfork and center-saddle bifurcations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Andoyer, M. H., Cours de Mécaniquee Céleste, Paris: Gauthier-Villars, 1923.

    MATH  Google Scholar 

  2. Arnol’d, V. I., Proof of a Theorem of A. N. Kolmogorov on the Invariance of Quasi-Periodic Motions under Small Perturbations of the Hamiltonian, Russian Math. Surveys, 1963, vol. 18, no. 5, pp. 9–36; see also: Uspekhi Mat. Nauk, 1963, vol. 18, no. 5, pp. 13-40.

    Article  Google Scholar 

  3. Borisov A. V., Mamaev I. S., Poisson Structures and Lie Algebras in Hamiltonian Mechanics, Izhevsk: R&C Dynamics, 1999 (Russian).

    MATH  Google Scholar 

  4. Borisov, A. V., García-Naranjo, L. C., Mamaev, I. S., and Montaldi, M., Reduction and Relative Equilibria for the Two-Body Problem on Spaces of Constant Curvature, Celestial Mech. Dynam. Astronom., 2018, vol. 130, no. 6, Art. 43, 36 pp.

    Article  MathSciNet  Google Scholar 

  5. Borisov, A. V., Mamaev, I. S., and Kilin, A. A., Two-Body Problem on a Sphere: Reduction, Stochasticity, Periodic Orbits, Regul. Chaotic Dyn., 2004, vol. 9, no. 3, pp. 265–279.

    Article  MathSciNet  Google Scholar 

  6. Cabral, H. E. and Meyer, K. R., Stability of Equilibria and Fixed Points of Conservative Systems, Nonlinearity, 1999, vol. 12, no. 5, pp. 1351–1362.

    Article  MathSciNet  Google Scholar 

  7. Deprit, A., Canonical Transformations Depending on a Small Parameter, Celestial Mech., 1969, vol. 1, pp. 12–30.

    Article  MathSciNet  Google Scholar 

  8. dos Santos, F. and Vidal, C., Stability of Equilibrium Solutions of Hamiltonian Systems with \(n\)-Degrees of Freedom and Single Resonance in the Critical Case, J. Differential Equations, 2018, vol. 264, no. 8, pp. 5152–5179.

    Article  MathSciNet  Google Scholar 

  9. Hanßmann, H., Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems: Results and Examples, Berlin: Springer, 2007.

    MATH  Google Scholar 

  10. Killing, H. W., Die Mechanik in den nicht-euklidischen Raumformen, J. Reine Angew. Math., 1885, vol. 98, no. 1, pp. 1–48.

    MathSciNet  MATH  Google Scholar 

  11. Markeev, A. P., Stability of a Canonical System with Two Degrees of Freedom in the Presence of Resonance, J. Appl. Math. Mech., 1968, vol. 32, no. 4, pp. 738–744; see also: Prikl. Mat. Mekh., 1968, vol. 32, no. 4, pp. 766-772.

    Article  MathSciNet  Google Scholar 

  12. Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Moscow: Nauka, 1978 (Russian).

    MATH  Google Scholar 

  13. Meyer, K. R. and Hall, G. R., Introduction to Hamiltonian Dynamical Systems and the \(N\)-Body Problem, New York: Springer, 1992.

    Book  Google Scholar 

  14. Moser, J. K., Lectures on Hamiltonian Systems, Providence, R.I.: AMS, 1968.

    MATH  Google Scholar 

  15. Treshchev, D. V., Loss of Stability in Hamiltonian Systems That Depend on Parameters, J. Appl. Math. Mech., 1992, vol. 56, no. 4, pp. 492–500; see also: Prikl. Mat. Mekh., 1992, vol. 56, no. 4, pp. 587-596.

    Article  MathSciNet  Google Scholar 

  16. Sokol’skiĭ, A. G., On Stability of an Autonomous Hamiltonian System with Two Degrees of Freedom under First-Order Resonance, J. Appl. Math. Mech., 1977, vol. 41, no. 1, pp. 20–28; see also: Prikl. Mat. Mekh., 1977, vol. 41, no. 1, pp. 24-33.

    Article  MathSciNet  Google Scholar 

  17. Sokol’skiĭ, A. G., On the Stability of an Autonomous Hamiltonian System with Two Degrees of Freedom in the Case of Equal Frequencies, J. Appl. Math. Mech., 1974, vol. 38, no. 5, pp. 741–749; see also: Prikl. Mat. Mekh., 1974, vol. 38, no. 5, pp. 791-799.

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dr. Alexey Borisov for his guidance and for sharing with us this research problem. He inspired us in this work. The authors would like to thank the anonymous reviewer for his/her careful reading of our manuscript and helpful comments.

Funding

J. Andrade was supported by project Fondecyt 11180776, C. Vidal was supported by project Fondecyt 1180288.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaime Andrade, Claudio Vidal or Claudio Sierpe.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

70F07, 70G60, 37D40

APPENDIX

In this section we provide the coefficients associated to the study of nonlinear stability for some cases and we also enunciate theorems that were used in the study of nonlinear stability of relative equilibria.

Coefficients Associated to the Study of Nonlinear Stability

Here we provide some coefficients associated to the study of nonlinear stability for the case of the right-angled RE, acute-angled isosceles RE and acute-angled RE.

Right-angled RE. Constants \(h_{\mu_{1}\mu_{2}\nu_{1}\nu_{2}}\) associated to the polynomials \(H_{s}^{0}\) given in (6.1):

$$\displaystyle\begin{aligned} \hline\displaystyle h_{2010}&\displaystyle=-\dfrac{\sigma_{1}^{2}\sigma_{4}s_{2}f_{0120}}{2\sqrt{2}},&\displaystyle h_{2001}&\displaystyle=-\dfrac{\sigma_{1}^{2}\sigma_{2}s_{2}^{2}f_{0120}}{2\sqrt{2}s_{1}},&\displaystyle h_{1110}&\displaystyle=\dfrac{\sigma_{1}\sigma_{3}\sigma_{4}s_{1}f_{0120}}{\sqrt{2}},\\ \displaystyle h_{0210}&\displaystyle=-\dfrac{\sigma_{3}^{2}\sigma_{4}s_{1}^{2}f_{0120}}{2\sqrt{2}s_{2}},&\displaystyle h_{0201}&\displaystyle=-\dfrac{\sigma_{2}\sigma_{3}^{2}s_{1}f_{0120}}{2\sqrt{2}},&\displaystyle h_{0030}&\displaystyle=-\dfrac{\sigma_{4}\left(\sigma_{4}+1\right)}{\sqrt{2}s_{2}^{3}},\\ \displaystyle h_{0012}&\displaystyle=-\dfrac{\sigma_{2}^{2}-2\left(\sigma_{4}+1\right)\sigma_{2}+\sigma_{4}}{\sqrt{2}s_{1}^{2}s_{2}},&\displaystyle h_{0021}&\displaystyle=\dfrac{\sigma_{4}\left(\sigma_{4}+2\right)-\sigma_{2}\left(2\sigma_{4}+1\right)}{\sqrt{2}s_{1}s_{2}^{2}},&\displaystyle h_{0003}&\displaystyle=\dfrac{\left(\sigma_{2}-1\right)\sigma_{2}}{\sqrt{2}s_{1}^{3}},\\ \displaystyle h_{1101}&\displaystyle=\dfrac{\sigma_{1}\sigma_{2}\sigma_{3}s_{2}f_{0120}}{\sqrt{2}},\\ \hline\end{aligned}$$
$$\displaystyle\begin{array}[]{lllllll}h_{2020}=\dfrac{1}{4}\sigma_{1}^{2}\sigma_{4}\left(\sigma_{4}f_{0220}-f_{1120}\right),\quad h_{2002}=\dfrac{\sigma_{1}^{2}\sigma_{2}s_{2}^{2}\left(\sigma_{2}f_{0220}+f_{1120}\right)}{4s_{1}^{2}},&&&&&&\\ h_{1120}=\dfrac{\sigma_{1}\sigma_{3}\sigma_{4}s_{1}\left(f_{1120}-\sigma_{4}f_{0220}\right)}{2s_{2}},\quad h_{1102}=-\dfrac{\sigma_{1}\sigma_{2}\sigma_{3}s_{2}\left(\sigma_{2}f_{0220}+f_{1120}\right)}{2s_{1}},&&&&&&\\ h_{0220}=\dfrac{\sigma_{3}^{2}\sigma_{4}s_{1}^{2}\left(\sigma_{4}f_{0220}-f_{1120}\right)}{4s_{2}^{2}},\quad h_{0202}=\dfrac{1}{4}\sigma_{2}\sigma_{3}^{2}\left(\sigma_{2}f_{0220}+f_{1120}\right),&&&&&&\\ h_{0040}=\dfrac{\sigma_{4}\left(\sigma_{4}\left(\sigma_{4}\left(\sigma_{4}f_{0400}-f_{1300}\right)+f_{2200}\right)-f_{3100}\right)}{4s_{2}^{4}},&&&&&&\\ h_{0031}=\dfrac{\sigma_{4}\left(2\left(\sigma_{2}-\sigma_{4}\right)f_{2200}+\sigma_{4}\left(4\sigma_{2}\sigma_{4}f_{0400}+\left(\sigma_{4}-3\sigma_{2}\right)f_{1300}\right)\right)-\left(\sigma_{2}-3\sigma_{4}\right)f_{3100}}{4s_{1}s_{2}^{3}},&&&&&&\\ h_{0013}=\dfrac{\left(\sigma_{4}-3\sigma_{2}\right)f_{3100}+\sigma_{2}\left(\sigma_{2}\left(4\sigma_{2}\sigma_{4}f_{0400}-\left(\sigma_{2}-3\sigma_{4}\right)f_{1300}\right)-2\left(\sigma_{2}-\sigma_{4}\right)f_{2200}\right)}{4s_{1}^{3}s_{2}},&&&&&&\\ h_{0004}=\dfrac{\sigma_{2}\left(\sigma_{2}\left(\sigma_{2}\left(\sigma_{2}f_{0400}+f_{1300}\right)+f_{2200}\right)+f_{3100}\right)}{4s_{1}^{4}}.&&&&&&\\ \hline\end{array}$$

Constants \(\beta_{11}\), \(\beta_{12}\) and \(\beta_{22}\) associated to the polynomial \(H_{0}^{4}\) given in (6.2):

$$\displaystyle\begin{array}[]{rl}\beta_{11}=&\dfrac{\Omega_{1}-2\Omega_{2}}{16\Omega_{1}^{3}\Omega_{2}-4\Omega_{1}\Omega_{2}^{3}}\left(\left(8\Omega_{1}^{3}-3\Omega_{1}\Omega_{2}^{2}\right)h_{0012}^{2}-4\Omega_{1}^{2}\Omega_{2}h_{0210}h_{1101}+\left(8\Omega_{1}^{3}-3\Omega_{1}\Omega_{2}^{2}\right)\right.\\ &+h_{0210}^{2}+2\Omega_{1}h_{0012}\left(2\Omega_{1}\Omega_{2}h_{1101}+\left(8\Omega_{1}^{2}-\Omega_{2}^{2}\right)h_{0210}\right)+\Omega_{2}\left(15\left(\Omega_{2}^{2}-4\Omega_{1}^{2}\right)h_{0003}^{2}\right.\\ &\left.+6\left(\Omega_{2}^{2}-4\Omega_{1}^{2}\right)h_{0201}h_{0003}+3\left(\Omega_{2}^{2}-4\Omega_{1}^{2}\right)h_{0201}^{2}\right.\left.+\Omega_{1}\left(\Omega_{2}\left(-h_{1101}^{2}\right)\right.\right.,\\ &\left.\left.+6\left(4\Omega_{1}^{2}-\Omega_{2}^{2}\right)h_{0004}+\left(8\Omega_{1}^{2}-2\Omega_{2}^{2}\right)h_{0202}\right)\right),\\ \beta_{11}=&\dfrac{1}{4\Omega_{2}\Omega_{1}^{4}+8\Omega_{2}^{2}\Omega_{1}^{3}-\Omega_{2}^{3}\Omega_{1}^{2}-2\Omega_{2}^{4}\Omega_{1}}\left(4h_{\{0210\}}h_{\{2010\}}\Omega_{1}^{5}-12h_{\{0003\}}h_{\{0021\}}\Omega_{1}^{4}\Omega_{2}\right.\\ &-2h_{\{0210\}}^{2}\Omega_{2}\Omega_{1}^{4}-2h_{\{1101\}}^{2}\Omega_{2}\Omega_{1}^{4}-4h_{\{0021\}}h_{\{0201\}}\Omega_{2}\Omega_{1}^{4}+8h_{\{0021\}}h_{\{1110\}}\Omega_{2}\Omega_{1}^{4}\\ &-12h_{\{0003\}}h_{\{2001\}}\Omega_{2}\Omega_{1}^{4}-4h_{\{0201\}}h_{\{2001\}}\Omega_{2}\Omega_{1}^{4}-8h_{\{1110\}}h_{\{2001\}}\Omega_{2}\Omega_{1}^{4}\\ &4h_{\{0220\}}\Omega_{2}\Omega_{1}^{5}+4h_{\{2002\}}\Omega_{2}\Omega_{1}^{5}-8h_{\{0021\}}^{2}\Omega_{2}^{2}\Omega_{1}^{3}-2h_{\{0210\}}h_{\{1101\}}\Omega_{2}^{2}\Omega_{1}^{3}\\ &-8h_{\{1110\}}^{2}\Omega_{2}^{2}\Omega_{1}^{3}-8h_{\{2001\}}^{2}\Omega_{2}^{2}\Omega_{1}^{3}+16h_{\{0021\}}h_{\{2001\}}\Omega_{2}^{2}\Omega_{1}^{3}-17h_{\{0210\}}h_{\{2010\}}\Omega_{2}^{2}\Omega_{1}^{3}\\ &8h_{\{0210\}}^{2}\Omega_{1}^{2}\Omega_{2}^{3}+8h_{\{1101\}}^{2}\Omega_{1}^{2}\Omega_{2}^{3}+51h_{\{0003\}}h_{\{0021\}}\Omega_{1}^{2}\Omega_{2}^{3}+17h_{\{0021\}}h_{\{0201\}}\Omega_{1}^{2}\Omega_{2}^{3}\\ &-2h_{\{0021\}}h_{\{1110\}}\Omega_{1}^{2}\Omega_{2}^{3}+51h_{\{0003\}}h_{\{2001\}}\Omega_{1}^{2}\Omega_{2}^{3}+17h_{\{0201\}}h_{\{2001\}}\Omega_{1}^{2}\Omega_{2}^{3}\\ &2h_{\{0021\}}^{2}\Omega_{1}\Omega_{2}^{4}-17h_{\{0220\}}\Omega_{1}^{3}\Omega_{2}^{3}-17h_{\{2002\}}\Omega_{1}^{3}\Omega_{2}^{3}+2h_{\{1110\}}h_{\{2001\}}\Omega_{1}^{2}\Omega_{2}^{3}\\ &2h_{\{1110\}}^{2}\Omega_{1}\Omega_{2}^{4}+2h_{\{2001\}}^{2}\Omega_{1}\Omega_{2}^{4}+8h_{\{0210\}}h_{\{1101\}}\Omega_{1}\Omega_{2}^{4}-4h_{\{0021\}}h_{\{2001\}}\Omega_{1}\Omega_{2}^{4}\\ &-12h_{\{0003\}}h_{\{0021\}}\Omega_{2}^{5}-4h_{\{0021\}}h_{\{0201\}}\Omega_{2}^{5}+4h_{\{0210\}}h_{\{2010\}}\Omega_{1}\Omega_{2}^{4}\\ &-12h_{\{0003\}}h_{\{2001\}}\Omega_{2}^{5}-4h_{\{0201\}}h_{\{2001\}}\Omega_{2}^{5}+4h_{\{0220\}}\Omega_{1}\Omega_{2}^{5}+4h_{\{2002\}}\Omega_{1}\Omega_{2}^{5}\\ &\left(8\Omega_{1}^{2}\Omega_{2}^{3}-2\Omega_{1}^{4}\Omega_{2}\right)h_{\{0012\}}^{2}+3h_{\{0030\}}h_{\{0210\}}\Omega_{1}\left(4\Omega_{1}^{4}-17\Omega_{2}^{2}\Omega_{1}^{2}+4\Omega_{2}^{4}\right)\\ &h_{\{0012\}}\Omega_{1}\left(\Omega_{1}^{2}-4\Omega_{2}^{2}\right)\left(2\Omega_{2}\left(2h_{\{0210\}}\Omega_{1}+h_{\{1101\}}\Omega_{2}\right)+3h_{\{0030\}}\left(4\Omega_{1}^{2}-\Omega_{2}^{2}\right)\right.\\ &+\left.\left.h_{\{2010\}}\left(4\Omega_{1}^{2}-\Omega_{2}^{2}\right)\right)\right),\\ \beta_{22}=&\dfrac{1}{4\Omega_{1}\Omega_{2}\left(\Omega_{1}+2\Omega_{2}\right)}\left(3\Omega_{1}^{3}\left(5h_{0030}^{2}+2h_{2010}h_{0030}+h_{2010}^{2}\right)\right.+\Omega_{1}^{2}\left(-3h_{0021}^{2}-h_{1110}^{2}\right.\\ &-2h_{2001}h_{0021}-3h_{2001}^{2}\left.+2\Omega_{1}\left(3h_{0040}+h_{2020}\right)\right)\Omega_{2}-4\left(15h_{0030}^{2}+6h_{0030}h_{2010}\right.\\ &\left.+3h_{2010}^{2}+h_{1110}\left(h_{2001}-h_{0021}\right)\right)\Omega_{1}\Omega_{2}^{2}\left.+8\Omega_{2}^{3}\left(\left(h_{0021}+h_{2001}\right){}^{2}-\Omega_{1}\left(3h_{0040}+h_{2020}\right)\right)\right).\end{array}$$

Acute-angled isosceles RE. Constants \(f_{\mu_{1}\mu_{2}\nu_{1}\nu_{2}}\), associated to the polynomials \(H_{s}\) given in (6.3):

$$\displaystyle\begin{array}[]{ll}\hline f_{2100}=\dfrac{1}{16}(\cos(4\alpha_{0})+3)\csc^{2}\alpha_{0}\sec^{6}\alpha_{0},&\quad f_{1200}=-\dfrac{1}{16}(\cos(4\alpha_{0})+3)\csc^{2}\alpha_{0}\sec^{6}\alpha_{0},\\ f_{0300}=-2\sin^{2}\alpha_{0}\sin(4\alpha_{0})\csc^{7}(2\alpha_{0}),&\quad f_{0120}=\dfrac{1}{4}\cot\alpha_{0}\csc^{2}\alpha_{0},\\\hline \end{array}$$
$$\displaystyle\begin{array}[]{ll}f_{4000}=\dfrac{1}{12}\cos(2\alpha_{0})\csc\alpha_{0}\sec^{5}\alpha_{0},&f_{2200}=-\dfrac{1}{32}\cos(2\alpha_{0})(\cos(4\alpha_{0})+5)\csc^{3}\alpha_{0}\sec^{7}\alpha_{0},\\ f_{3100}=-\dfrac{1}{6}\cos(2\alpha_{0})\csc\alpha_{0}\sec^{5}\alpha_{0},&f_{1300}=\dfrac{1}{48}\cos(2\alpha_{0})(\cos(4\alpha_{0})+8)\csc^{3}\alpha_{0}\sec^{7}\alpha_{0},\\ f_{1120}=-\cot(2\alpha_{0})\csc(2\alpha_{0}),&f_{0400}=\dfrac{1}{384}(7\cos(4\alpha_{0})+11)\csc^{5}\alpha_{0}\sec^{7}\alpha_{0},\\ f_{2020}=\cot(2\alpha_{0})\csc(2\alpha_{0}),&f_{0220}=-\dfrac{1}{32}(2\cos(2\alpha_{0})+\cos(4\alpha_{0})+3)\csc^{4}\alpha_{0}\sec^{2}\alpha_{0},\\ \hline\end{array}$$
$$\displaystyle\begin{array}[]{ll}f_{4100}=-\dfrac{1}{48}(\cos(4\alpha_{0})+3)\csc^{2}\alpha_{0}\sec^{6}\alpha_{0},&\quad f_{3200}=\dfrac{1}{24}(\cos(4\alpha_{0})+3)\csc^{2}\alpha_{0}\sec^{6}\alpha_{0},\\ f_{2120}=-\dfrac{1}{2}(\cos(4\alpha_{0})+3)\csc^{3}(2\alpha_{0}),&\quad f_{1220}=\left(2\cot^{2}(2\alpha_{0})+1\right)\csc(2\alpha_{0}),\end{array}$$
$$\displaystyle\begin{array}[]{l}f_{2300}=\dfrac{1}{384}(22\cos(4\alpha_{0})+\cos(8\alpha_{0})+25)\csc^{4}\alpha_{0}\sec^{8}\alpha_{0},\\ f_{1400}=-\dfrac{1}{768}(40\cos(4\alpha_{0})+\cos(8\alpha_{0})+55)\csc^{4}\alpha_{0}\sec^{8}\alpha_{0},\\ f_{0500}=-\dfrac{1}{256}(7\cos(2\alpha_{0})+\cos(6\alpha_{0}))\csc^{6}\alpha_{0}\sec^{8}\alpha_{0},\\ f_{0320}=\dfrac{1}{192}(17\cos(2\alpha_{0})+2\cos(4\alpha_{0})+\cos(6\alpha_{0})+4)\csc^{5}\alpha_{0}\sec^{3}\alpha_{0},\\\hline\end{array}$$
$$\displaystyle\begin{array}[]{ll}f_{6000}=-\dfrac{1}{90}\cos(2\alpha_{0})\csc\alpha_{0}\sec^{5}\alpha_{0},&f_{4200}=\dfrac{1}{96}\cos(2\alpha_{0})(\cos(4\alpha_{0})+5)\csc^{3}\alpha_{0}\sec^{7}\alpha_{0},\\ f_{5100}=\dfrac{1}{30}\cos(2\alpha_{0})\csc\alpha_{0}\sec^{5}\alpha_{0},&f_{3300}=-\dfrac{1}{72}\cos(2\alpha_{0})(\cos(4\alpha_{0})+8)\csc^{3}\alpha_{0}\sec^{7}\alpha_{0},\\ f_{4020}=-\dfrac{1}{3}\cot(2\alpha_{0})\csc(2\alpha_{0}),&f_{3120}=\dfrac{2}{3}\cot(2\alpha_{0})\csc(2\alpha_{0}),\end{array}$$
$$\displaystyle\begin{array}[]{l}f_{2400}=-\dfrac{1}{1536}\cos(2\alpha_{0})(44\cos(4\alpha_{0})+\cos(8\alpha_{0})+75)\csc^{5}\alpha_{0}\sec^{9}\alpha_{0},\\ f_{2220}=\cot(2\alpha_{0})\left(3\cot^{2}(2\alpha_{0})+2\right)\csc(2\alpha_{0}),\\ f_{1500}=\dfrac{1}{3840}\cos(2\alpha_{0})(86\cos(4\alpha_{0})+\cos(8\alpha_{0})+213)\csc^{5}\alpha_{0}\sec^{9}\alpha_{0},\\ f_{1320}=-\dfrac{1}{3}(\cos(4\alpha_{0})+8)\cot(2\alpha_{0})\csc^{3}(2\alpha_{0}),\\ f_{0600}=\dfrac{1}{46080}(416\cos(4\alpha_{0})+31\cos(8\alpha_{0})+453)\csc^{7}\alpha_{0}\sec^{9}\alpha_{0},\\ f_{0420}=-\dfrac{1}{1536}(22\cos(2\alpha_{0})+40\cos(4\alpha_{0})+2\cos(6\alpha_{0})+\cos(8\alpha_{0})+55)\csc^{6}\alpha_{0}\sec^{4}\alpha_{0}.\\\hline\end{array}$$

Acute-angled RE. Constants \(f_{\mu_{1}\mu_{2}\nu_{1}\nu_{2}}\), associated to the polynomials \(H_{3}\) and \(H_{4}\) given in (6.5):

$$\displaystyle\begin{array}[]{l}\hline f_{0300}=-\dfrac{(\mu+1)\cos\alpha_{0}\cot q_{0}\csc^{3}q_{0}}{\mu\cos\alpha_{0}\cos q_{0}+\cos(q_{0}-\alpha_{0})},\quad f_{2100}=\dfrac{\sec\alpha_{0}\csc q_{0}(\sin(2\alpha_{0})+(\mu+1)\cos(2\alpha_{0})\cot q_{0})}{\mu\cos\alpha_{0}\cos q_{0}+\cos(q_{0}-\alpha_{0})},\end{array}$$
$$\displaystyle\begin{array}[]{l}f_{0120}=\cos\alpha_{0}\csc^{2}q_{0}(\sin\alpha_{0}+(\mu+1)\cos\alpha_{0}\cot q_{0}),\\ f_{1200}=\dfrac{\cos(2\alpha_{0})\sec\alpha_{0}\cot q_{0}\csc q_{0}-(\mu+1)\sin\alpha_{0}(\cos(2q_{0})+2)\csc^{3}q_{0}}{\mu\cos\alpha_{0}\cos q_{0}+\cos(q_{0}-\alpha_{0})},\\\hline\end{array}$$
$$\displaystyle f_{4000}=\dfrac{\sec\alpha_{0}\csc q_{0}(\mu\cos(2\alpha_{0})+\cos(2(q_{0}-\alpha_{0})))}{6(\mu\cos\alpha_{0}\cos q_{0}+\cos(q_{0}-\alpha_{0}))},$$
$$\displaystyle f_{3100}=\dfrac{2\csc q_{0}(\cos\alpha_{0}-\sin\alpha_{0}(\tan\alpha_{0}+2(\mu+1)\cot q_{0}))}{3(\mu\cos\alpha_{0}\cos q_{0}+\cos(q_{0}-\alpha_{0}))},$$
$$\displaystyle f_{2020}=\dfrac{1}{2}\csc^{2}q_{0}(\mu\cos(2\alpha_{0})+\cos(2(q_{0}-\alpha_{0}))),$$
$$\displaystyle f_{1120}=\csc^{2}q_{0}(\cos(2\alpha_{0})-(\mu+1)\sin(2\alpha_{0})\cot q_{0}),$$
$$\displaystyle f_{2200}=-\dfrac{2(\mu+1)\cos(2\alpha_{0})\sec\alpha_{0}(\cos(2q_{0})+2)\csc^{3}q_{0}+8\sin\alpha_{0}\cot q_{0}\csc q_{0}}{4(\mu\cos\alpha_{0}\cos q_{0}+\cos(q_{0}-\alpha_{0}))},$$
$$\displaystyle f_{1300}=\dfrac{\csc^{3}q_{0}(2(\mu+1)\sin\alpha_{0}(\cos(2q_{0})+5)\cot q_{0}-\cos(2\alpha_{0})\sec\alpha_{0}(\cos(2q_{0})+2))}{3(\mu\cos\alpha_{0}\cos q_{0}+\cos(q_{0}-\alpha_{0}))},$$
$$\displaystyle f_{0400}=\dfrac{(\mu+1)\cos\alpha_{0}(7\cos(2q_{0})+11)\csc^{5}q_{0}}{12(\mu\cos\alpha_{0}\cos q_{0}+\cos(q_{0}-\alpha_{0}))},$$
$$\displaystyle f_{0220}=-\dfrac{1}{4}\cos\alpha_{0}\csc^{4}q_{0}(2(\mu+1)\cos\alpha_{0}(\cos(2q_{0})+2)+2\sin\alpha_{0}\sin(2q_{0})).$$

Constants \(h_{\mu_{1}\mu_{2}\nu_{1}\nu_{2}}\) associated to the polynomials \(H_{3}^{0}\) and \(H_{4}^{0}\) given in (6.6).

$$\displaystyle\begin{array}[]{l}\hline\begin{array}[]{lll}h_{2010}=8\gamma^{3}s_{2}^{2}\xi\Omega_{2}f_{0120},&h_{2001}=-8\gamma^{2}\delta s_{2}^{2}\xi\Omega_{1}f_{0120},&h_{1110}=16\gamma^{2}\delta\sigma_{2}s_{2}\xi\Omega_{2}f_{0120},\\ h_{1101}=-16\gamma\delta^{2}\sigma_{2}s_{2}\xi\Omega_{1}f_{0120},&h_{0210}=8\gamma\delta^{2}\sigma_{2}^{2}\xi\Omega_{2}f_{0120},&h_{0201}=-8\delta^{3}\sigma_{2}^{2}\xi\Omega_{1}f_{0120},\end{array}\\ \begin{array}[]{l}h_{0030}=2\gamma^{3}\xi\Omega_{2}^{3}\left(s_{1}\left(s_{1}f_{2100}+2\xi f_{1200}\right)+4\xi^{2}f_{0300}\right),\\ h_{0021}=-2\gamma^{2}\delta\xi\Omega_{1}\Omega_{2}^{2}\left(2\xi\left((\sigma_{1}+2s_{1})f_{1200}+6\xi f_{0300}\right)+s_{1}(2\sigma_{1}+s_{1})f_{2100}\right),\\ h_{0012}=2\gamma\delta^{2}\xi\Omega_{1}^{2}\Omega_{2}\left(2\xi\left((2\sigma_{1}+s_{1})f_{1200}+6\xi f_{0300}\right)+\sigma_{1}(\sigma_{1}+2s_{1})f_{2100}\right),\\ h_{0003}=-2\delta^{3}\xi\Omega_{1}^{3}\left(\sigma_{1}\left(\sigma_{1}f_{2100}+2\xi f_{1200}\right)+4\xi^{2}f_{0300}\right),\end{array}\\ \hline\begin{array}[]{rl}h_{2020}=&4s_{2}^{2}\gamma^{4}\left(4f_{0220}\xi^{2}+s_{1}\left(2\xi f_{1120}+s_{1}f_{2020}\right)\right)\Omega_{2}^{2},\\ h_{2011}=&-8s_{2}^{2}\gamma^{3}\delta\left(4f_{0220}\xi^{2}+(\sigma_{1}+s_{1})f_{1120}\xi+\sigma_{1}s_{1}f_{2020}\right)\Omega_{1}\Omega_{2},\\ h_{2002}=&4s_{2}^{2}\gamma^{2}\delta^{2}\left(4f_{0220}\xi^{2}+\sigma_{1}\left(2\xi f_{1120}+\sigma_{1}f_{2020}\right)\right)\Omega_{1}^{2},\\ h_{1120}=&8\sigma_{2}s_{2}\gamma^{3}\delta\left(4f_{0220}\xi^{2}+s_{1}\left(2\xi f_{1120}+s_{1}f_{2020}\right)\right)\Omega_{2}^{2},\\ h_{1111}=&-16\sigma_{2}s_{2}\gamma^{2}\delta^{2}\left(4f_{0220}\xi^{2}+(\sigma_{1}+s_{1})f_{1120}\xi+\sigma_{1}s_{1}f_{2020}\right)\Omega_{1}\Omega_{2},\\ h_{1102}=&8\sigma_{2}s_{2}\gamma\delta^{3}\left(4f_{0220}\xi^{2}+\sigma_{1}\left(2\xi f_{1120}+\sigma_{1}f_{2020}\right)\right)\Omega_{1}^{2},\\ h_{0220}=&4\sigma_{2}^{2}\gamma^{2}\delta^{2}\left(4f_{0220}\xi^{2}+s_{1}\left(2\xi f_{1120}+s_{1}f_{2020}\right)\right)\Omega_{2}^{2},\\ h_{0211}=&-8\sigma_{2}^{2}\gamma\delta^{3}\left(4f_{0220}\xi^{2}+(\sigma_{1}+s_{1})f_{1120}\xi+\sigma_{1}s_{1}f_{2020}\right)\Omega_{1}\Omega_{2},\\ h_{0202}=&4\sigma_{2}^{2}\delta^{4}\left(4f_{0220}\xi^{2}+\sigma_{1}\left(2\xi f_{1120}+\sigma_{1}f_{2020}\right)\right)\Omega_{1}^{2},\\ h_{0040}=&\gamma^{4}\left(16f_{0400}\xi^{4}+s_{1}\left(8f_{1300}\xi^{3}+s_{1}\left(f_{4000}s_{1}^{2}+2\xi f_{3100}s_{1}+4\xi^{2}f_{2200}\right)\right)\right)\Omega_{2}^{4},\\ h_{0031}=&-2\gamma^{3}\delta\left(32f_{0400}\xi^{4}+4(\sigma_{1}+3s_{1})f_{1300}\xi^{3}+s_{1}\left(4(\sigma_{1}+s_{1})f_{2200}\xi^{2}\right.\right.\\ &\left.\left.+s_{1}\left((3\sigma_{1}+s_{1})\xi f_{3100}+2\sigma_{1}s_{1}f_{4000}\right)\right)\right)\Omega_{1}\Omega_{2}^{3},\\ h_{0022}=&2\gamma^{2}\delta^{2}\left(48f_{0400}\xi^{4}+12(\sigma_{1}+s_{1})f_{1300}\xi^{3}+2\sigma_{1}^{2}f_{2200}\xi^{2}+2s_{1}^{2}f_{2200}\xi^{2}+8\sigma_{1}s_{1}f_{2200}\xi^{2}\right.\\ &\left.+3\sigma_{1}s_{1}^{2}f_{3100}\xi+3\sigma_{1}^{2}s_{1}f_{3100}\xi+3\sigma_{1}^{2}s_{1}^{2}f_{4000}\right)\Omega_{1}^{2}\Omega_{2}^{2},\\ h_{0013}=&-2\gamma\delta^{3}\left(32f_{0400}\xi^{4}+4(3\sigma_{1}+s_{1})f_{1300}\xi^{3}+\sigma_{1}\left(4(\sigma_{1}+s_{1})f_{2200}\xi^{2}\right.\right.\\ &\left.\left.+\sigma_{1}\left((\sigma_{1}+3s_{1})\xi f_{3100}+2\sigma_{1}s_{1}f_{4000}\right)\right)\right)\Omega_{1}^{3}\Omega_{2},\\ h_{0004}=&\delta^{4}\left(16f_{0400}\xi^{4}+\sigma_{1}\left(8f_{1300}\xi^{3}+r_{1}\left(f_{4000}r_{1}^{2}+2tf_{3100}r_{1}+4\xi^{2}f_{2200}\right)\right)\right)\Omega_{1}^{4}.\end{array}\\ \hline\end{array}$$

Constants associated to the polynomials in the normal form \(H_{0}^{4}\) given in (6.7):

$$\displaystyle\begin{array}[]{rl}\beta_{11}=&\left.60h_{0030}^{2}\Omega_{1}^{5}+12h_{2010}^{2}\Omega_{1}^{5}+24h_{0030}h_{2010}\Omega_{1}^{5}+24h_{0040}\Omega_{2}\Omega_{1}^{5}+8h_{2020}\Omega_{2}\Omega_{1}^{5}-12h_{2001}^{2}\Omega_{2}\Omega_{1}^{4}\right.\\ &-8h_{0021}h_{2001}\Omega_{2}\Omega_{1}^{4}-255h_{0030}^{2}\Omega_{2}^{2}\Omega_{1}^{3}-51h_{2010}^{2}\Omega_{2}^{2}\Omega_{1}^{3}+16h_{0021}h_{1110}\Omega_{2}^{2}\Omega_{1}^{3}\\ &-102h_{0030}h_{2010}\Omega_{2}^{2}\Omega_{1}^{3}-102h_{0040}\Omega_{1}^{3}\Omega_{2}^{3}+35h_{0021}^{2}\Omega_{1}^{2}\Omega_{2}^{3}+h_{1110}^{2}\Omega_{1}^{2}\Omega_{2}^{3}+35h_{2001}^{2}\Omega_{1}^{2}\Omega_{2}^{3}\\ &+66h_{0021}h_{2001}\Omega_{1}^{2}\Omega_{2}^{3}+60h_{0030}^{2}\Omega_{1}\Omega_{2}^{4}-4h_{0021}h_{1110}\Omega_{1}\Omega_{2}^{4}+4h_{1110}h_{2001}\Omega_{1}\Omega_{2}^{4}\\ &-8h_{0021}^{2}\Omega_{2}^{5}-16h_{0021}h_{2001}\Omega_{2}^{5}+12h_{2010}^{2}\Omega_{1}\Omega_{2}^{4}+24h_{0030}h_{2010}\Omega_{1}\Omega_{2}^{4}-16h_{1110}h_{2001}\Omega_{2}^{2}\Omega_{1}^{3}\\ &\left.-8h_{2001}^{2}\Omega_{2}^{5}+24h_{0040}\Omega_{1}\Omega_{2}^{5}+8h_{2020}\Omega_{1}\Omega_{2}^{5}-12h_{0021}^{2}\Omega_{2}\Omega_{1}^{4}-4h_{1110}^{2}\Omega_{2}\Omega_{1}^{4}-34h_{2020}\Omega_{1}^{3}\Omega_{2}^{3},\right.\end{array}$$
$$\displaystyle\begin{array}[]{rl}\beta_{12}=&8h_{0012}h_{0030}\Omega_{1}^{5}+48h_{0030}h_{0210}\Omega_{1}^{5}+16h_{0012}h_{2010}\Omega_{1}^{5}+16h_{0210}h_{2010}\Omega_{1}^{5}-8h_{0012}^{2}\Omega_{2}\Omega_{1}^{4}\\ &-48h_{0003}h_{0021}\Omega_{2}\Omega_{1}^{4}-16h_{0021}h_{0201}\Omega_{2}\Omega_{1}^{4}-8h_{0210}^{2}\Omega_{2}\Omega_{1}^{4}-8h_{1101}^{2}\Omega_{2}\Omega_{1}^{4}+16h_{0022}\Omega_{2}\Omega_{1}^{5}\\ &+32h_{0021}h_{1110}\Omega_{2}\Omega_{1}^{4}+16h_{0220}\Omega_{2}\Omega_{1}^{5}-16h_{0201}h_{2001}\Omega_{2}\Omega_{1}^{4}16h_{2002}\Omega_{2}\Omega_{1}^{5}-32h_{0021}^{2}\Omega_{2}^{2}\Omega_{1}^{3}\\ &-204h_{0012}h_{0030}\Omega_{2}^{2}\Omega_{1}^{3}-32h_{2001}^{2}\Omega_{2}^{2}\Omega_{1}^{3}-68h_{0012}h_{2010}\Omega_{2}^{2}\Omega_{1}^{3}-68h_{0210}h_{2010}\Omega_{2}^{2}\Omega_{1}^{3}\\ &-32h_{1110}^{2}\Omega_{2}^{2}\Omega_{1}^{3}+8h_{0012}h_{1101}\Omega_{2}^{2}\Omega_{1}^{3}-8h_{0210}h_{1101}\Omega_{2}^{2}\Omega_{1}^{3}+64h_{0021}h_{2001}\Omega_{2}^{2}\Omega_{1}^{3}\\ &+32h_{0210}^{2}\Omega_{1}^{2}\Omega_{2}^{3}+204h_{0003}h_{0021}\Omega_{1}^{2}\Omega_{2}^{3}+68h_{0021}h_{0201}\Omega_{1}^{2}\Omega_{2}^{3}-64h_{0012}h_{0210}\Omega_{1}^{2}\Omega_{2}^{3}\\ &+32h_{1101}^{2}\Omega_{1}^{2}\Omega_{2}^{3}-8h_{0021}h_{1110}\Omega_{1}^{2}\Omega_{2}^{3}+204h_{0003}h_{2001}\Omega_{1}^{2}\Omega_{2}^{3}+68h_{0201}h_{2001}\Omega_{1}^{2}\Omega_{2}^{3}\\ &+8h_{0021}^{2}\Omega_{1}\Omega_{2}^{4}-68h_{0022}\Omega_{1}^{3}\Omega_{2}^{3}-68h_{0220}\Omega_{1}^{3}\Omega_{2}^{3}-68h_{2002}\Omega_{1}^{3}\Omega_{2}^{3}+8h_{1110}h_{2001}\Omega_{1}^{2}\Omega_{2}^{3}\\ &+48h_{0012}h_{0030}\Omega_{1}\Omega_{2}^{4}+48h_{0030}h_{0210}\Omega_{1}\Omega_{2}^{4}-32h_{0012}h_{1101}\Omega_{1}\Omega_{2}^{4}-48h_{0003}h_{2001}\Omega_{2}\Omega_{1}^{4}\\ &+8h_{1110}^{2}\Omega_{1}\Omega_{2}^{4}+8h_{2001}^{2}\Omega_{1}\Omega_{2}^{4}+32h_{0210}h_{1101}\Omega_{1}\Omega_{2}^{4}-16h_{0021}h_{2001}\Omega_{1}\Omega_{2}^{4}+32h_{0012}^{2}\Omega_{2}^{3}\Omega_{1}^{2}\\ &-48h_{0003}h_{0021}\Omega_{2}^{5}+16h_{0012}h_{2010}\Omega_{1}\Omega_{2}^{4}+16h_{0210}h_{2010}\Omega_{1}\Omega_{2}^{4}-204h_{0030}h_{0210}\Omega_{2}^{2}\Omega_{1}^{3}\\ &-16h_{0021}h_{0201}\Omega_{2}^{5}-48h_{0003}h_{2001}\Omega_{2}^{5}-16h_{0201}h_{2001}\Omega_{2}^{5}+16h_{0022}\Omega_{1}\Omega_{2}^{5}+16h_{0220}\Omega_{1}\Omega_{2}^{5}\\ &+16h_{0012}h_{0210}\Omega_{2}\Omega_{1}^{4}+16h_{2002}\Omega_{1}\Omega_{2}^{5}-32h_{1110}h_{2001}\Omega_{2}\Omega_{1}^{4},\end{array}$$
$$\displaystyle\begin{array}[]{rl}\beta_{22}=&8h_{0012}^{2}\Omega_{1}^{5}+8h_{0210}^{2}\Omega_{1}^{5}+16h_{0012}h_{0210}\Omega_{1}^{5}-60h_{0003}^{2}\Omega_{2}\Omega_{1}^{4}-12h_{0201}^{2}\Omega_{2}\Omega_{1}^{4}\\ &24h_{0004}\Omega_{2}\Omega_{1}^{5}+8h_{0202}\Omega_{2}\Omega_{1}^{5}+4h_{0012}h_{1101}\Omega_{2}\Omega_{1}^{4}-4h_{0210}h_{1101}\Omega_{2}\Omega_{1}^{4}-35h_{0012}^{2}\Omega_{2}^{2}\Omega_{1}^{3}\\ &-35h_{0210}^{2}\Omega_{2}^{2}\Omega_{1}^{3}-h_{1101}^{2}\Omega_{2}^{2}\Omega_{1}^{3}+255h_{0003}^{2}\Omega_{2}^{3}\Omega_{1}^{2}+51h_{0201}^{2}\Omega_{2}^{3}\Omega_{1}^{2}+102h_{0003}h_{0201}\Omega_{2}^{3}\Omega_{1}^{2}\\ &12h_{0012}^{2}\Omega_{1}\Omega_{2}^{4}+12h_{0210}^{2}\Omega_{1}\Omega_{2}^{4}+8h_{0012}h_{0210}\Omega_{1}\Omega_{2}^{4}-102h_{0004}\Omega_{1}^{3}\Omega_{2}^{3}-34h_{0202}\Omega_{1}^{3}\Omega_{2}^{3}\\ &-60h_{0003}^{2}\Omega_{2}^{5}-12h_{0201}^{2}\Omega_{2}^{5}-24h_{0003}h_{0201}\Omega_{2}^{5}+24h_{0004}\Omega_{1}\Omega_{2}^{5}+8h_{0202}\Omega_{1}\Omega_{2}^{5}+4h_{1101}^{2}\Omega_{1}\Omega_{2}^{4}\\ &-24h_{0003}h_{0201}\Omega_{2}\Omega_{1}^{4}-66h_{0012}h_{0210}\Omega_{2}^{2}\Omega_{1}^{3}+16h_{0210}h_{1101}\Omega_{1}^{2}\Omega_{2}^{3}-16h_{0012}h_{1101}\Omega_{2}^{3}\Omega_{1}^{2}.\\ \end{array}$$

Constants associated to the polynomials in the normal form \(H_{0}^{4}\) given in (6.8):

$$\displaystyle\xi_{11}=\dfrac{1}{60\Omega_{2}}\left(-19h_{0021}^{2}+12h_{1110}h_{0021}-2h_{2001}h_{0021}+225h_{0030}^{2}-9h_{1110}^{2}\right.$$
$$\displaystyle\quad\left.-19h_{2001}^{2}-12h_{1110}h_{2001}+45h_{2010}^{2}+90h_{0030}h_{2010}+90h_{0040}\Omega_{2}+30h_{2020}\Omega_{2}\right)$$
$$\displaystyle\xi_{12}=\dfrac{1}{420\Omega_{2}}\left(-72h_{0012}^{2}+1260h_{0030}h_{0012}-168h_{0021}^{2}-420h_{0003}h_{0021}-140h_{0021}h_{0201}\right.$$
$$\displaystyle\quad\left.-72h_{0210}^{2}+144h_{0012}h_{0210}+1260h_{0030}h_{0210}-24h_{1101}h_{0210}+24h_{0012}h_{1101}\right.$$
$$\displaystyle\quad\left.-72h_{1101}^{2}-168h_{1110}^{2}+504h_{0021}h_{1110}-420h_{0003}h_{2001}+336h_{0021}h_{2001}\right.$$
$$\displaystyle\quad\left.-168h_{2001}^{2}-140h_{0201}h_{2001}-504h_{1110}h_{2001}+420h_{0012}h_{2010}+420h_{0210}h_{2010}\right.$$
$$\displaystyle\quad\left.420h_{0022}\Omega_{2}+420h_{0220}\Omega_{2}+420h_{2002}\Omega_{2}\right)$$
$$\displaystyle\xi_{22}=\dfrac{1}{140\Omega_{2}}\left(-175h_{0003}^{2}-70h_{0201}h_{0003}+69h_{0012}^{2}-35h_{0201}^{2}+69h_{0210}^{2}+142h_{0012}h_{0210}\right.$$
$$\displaystyle\quad\left.-h_{1101}^{2}+12h_{0012}h_{1101}-12h_{0210}h_{1101}+210h_{0004}\Omega_{2}+70h_{0202}\Omega_{2}\right)$$
$$\displaystyle B=\dfrac{1}{420\Omega_{2}}\left(-252h_{0,0,1,2}h_{0,0,2,1}-420h_{0,0,3,0}h_{0,0,2,1}-168h_{0,2,1,0}h_{0,0,2,1}+42h_{1,1,0,1}h_{0,0,2,1}\right.$$
$$\displaystyle\quad\left.168h_{0,0,1,2}h_{1,1,1,0}+630h_{0,0,3,0}h_{1,1,1,0}+252h_{0,2,1,0}h_{1,1,1,0}+42h_{1,1,0,1}h_{1,1,1,0}\right.$$
$$\displaystyle\quad\left.252h_{0,0,1,2}h_{2,0,0,1}+840h_{0,0,3,0}h_{2,0,0,1}+168h_{0,2,1,0}h_{2,0,0,1}-42h_{1,1,0,1}h_{2,0,0,1}\right.$$
$$\displaystyle\quad\left.-420h_{0,0,2,1}h_{2,0,1,0}+210h_{1,1,1,0}h_{2,0,1,0}+210h_{0,0,3,1}\Omega_{2}-210h_{1,1,2,0}\Omega_{2}-210h_{2,0,1,1}\Omega_{2}\right)$$

Results about Stability

Let us suppose that the frequencies \(\omega_{1}\) and \(\omega_{2}\) satisfy the resonance relation \(a\omega_{1}-b\omega_{1}=0\), where \(a\) and \(b\) are relatively prime positive integers or \(a=b=1\). If \(a=b=1\), we will suppose that the matrix associated to the linear system is diagonalizable. In addition, we assume that the Hamiltonian is written in action-angle variables \((I,\varphi)=(I_{1},I_{2},\varphi_{1},\varphi_{2})\), being in its normal form up to order \(m=2l-1\) or \(m=2l\), i. e.,

$$H(I,\varphi)=H_{2}(I)+\cdots+H_{2l-2}(I)+H_{m}(I,a\varphi_{1}+b\varphi_{2})+H^{*},$$
(A.1)

where

  • \(H_{2}=\omega_{1}I_{1}-\omega_{2}I_{2}\);

  • \(H_{2j}\) is a homogeneous polynomial of degree \(j\) in \(I_{1}\) and \(I_{2}\);

  • \(H_{m}(I,a\varphi_{1}+b\varphi_{2})\) is a homogeneous polynomial of degree \(m\) in \(\sqrt{I_{1}},\sqrt{I_{2}}\) with coefficients that possess finite Fourier series in a unique angle \(a\varphi_{1}+b\varphi_{2}\);

  • \(H^{*}\) denotes terms of order greater than \(m\) in the variables \(\sqrt{I_{1}}\) and \(\sqrt{I_{2}}\);

  • \(H\) is an analytical function in the variables \(\sqrt{I_{1}},\sqrt{I_{2}},\varphi_{1},\varphi_{2}\) and \(2\pi\)-periodic in \(\varphi_{1}\) and \(\varphi_{2}\).

Consider the function

$$\Psi(\phi)=H_{m}(\omega_{2},\omega_{1},a\phi),$$
(A.2)

where \(\phi=\varphi_{1}+\frac{b}{a}\varphi_{2}\) and define \(D_{2j}=H_{2j}(\omega_{2},\omega_{1})\).

Theorem 11 (Arnold’s Theorem)

If there exists some \(j=2,\cdots,l-1\) , with \(D_{2j}\neq 0\) , then the equilibrium solution \(q_{i}=p_{i}=0\) of (A.1) is stable in the sense of Lyapunov.

See the original proof in [2, 14] and also [13].

In the case where \(D_{2j}=0\), for \(j=2,\cdots,l-1\), we have the following result.

Theorem 12 (Sokol’skii – Cabral – Meyer’s Theorem)

If \(\Psi(\phi)\neq 0\) , for all \(\phi\) , then the equilibrium point \(q_{i}=p_{i}=0\) of (A.1) is stable in the sense of Lyapunov, while, if \(\Psi(\phi)\neq 0\) has a simple zero, then the equilibrium point \(q_{i}=p_{i}=0\) of (A.1) is unstable in the sense of Lyapunov.

See the proof in Theorem 4.1 in [6] or a particular version for resonances of order \(2\) in Theorem 2.1 in [16], resonances of order \(3\) and \(4\) in Theorems 2.1 and 3.1 in [11].

Now let us suppose that the Hamiltonian is in Cartesian coordinates \((X,Y,P_{1},P_{2})\) and has the form

$$H=\frac{\delta_{1}}{2}Y^{2}+\frac{\delta_{2}\omega}{2}(X+P_{1}^{2})+H^{3}+H^{4}+\cdots,$$
(A.3)
where
$$H^{s}=h_{0s00}P_{2}^{s}+\sum_{j=1}h_{0s-2jj}P_{2}^{2-2j}(X^{2}+P_{1}^{2})^{j},\quad\mbox{for }s=3,4,\cdots$$
Let \(M\) be the lowest positive integer such that \(h_{0M00}\neq 0\). Then we have the following result related to the Lyapunov stability.

Theorem 13 (Sokol’skii, 1978)

If \(M\) is odd, then the equilibrium \((0,0)\) in (A.3) is unstable in the sense of Lyapunov. If \(M\) is an even number, then the equilibrium \((0,0)\) in (A.3) is stable in the sense of Lyapunov whether \(\delta_{1}h_{0M00}>0\) and if \(\delta_{1}h_{0M00}<0\) , the equilibrium point is unstable in the sense of Lyapunov.

The proof can be found in [16].

Now assume that the Hamiltonian has the form

$$\displaystyle H=\frac{1}{2}(X^{2}+Y^{2})+\omega(XP_{2}-YP_{1})+A(P_{1}^{2}+P_{2}^{2})^{2}+B(XP_{2}-YP_{1})(P_{1}^{2}+P_{2}^{2})$$
(A.4)
$$\displaystyle\quad+C(XP_{2}-YP_{1})^{2}+\cdots,$$
where \(A,B\) and \(C\) are constants. Then we have the following result.

Theorem 14 (Sokol’skii, 1978)

If \(A>0\) , the equilibrium solution \((0,0)\) of (A.4) is stable in the sense of Lyapunov. If \(A<0\) , the equilibrium solution is unstable in the sense of Lyapunov.

The proof is given in [17] and [15].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, J., Vidal, C. & Sierpe, C. Stability of the Relative Equilibria in the Two-body Problem on the Sphere. Regul. Chaot. Dyn. 26, 402–438 (2021). https://doi.org/10.1134/S1560354721040067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354721040067

Keywords

Navigation