Skip to main content
Log in

The dynamics of a rigid body in potential flow with circulation

  • Special Issue: Valery Vasilievich Kozlov-60
  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We consider the motion of a two-dimensional body of arbitrary shape in a planar irrotational, incompressible fluid with a given amount of circulation around the body. We derive the equations of motion for this system by performing symplectic reduction with respect to the group of volume-preserving diffeomorphisms and obtain the relevant Poisson structures after a further Poisson reduction with respect to the group of translations and rotations. In this way, we recover the equations of motion given for this system by Chaplygin and Lamb, and we give a geometric interpretation for the Kutta-Zhukowski force as a curvature-related effect. In addition, we show that the motion of a rigid body with circulation can be understood as a geodesic flow on a central extension of the special Euclidian group SE(2), and we relate the cocycle in the description of this central extension to a certain curvature tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E., and Ratiu, T., Manifolds, Tensor Analysis, and Applications. Second Edition. Applied Mathematical Sciences, vol. 75, New York: Springer, 1988.

    MATH  Google Scholar 

  2. Abraham, R. and Marsden, J.E. Foundations of Mechanics. Second edition, revised and enlarged. With the assistance of Tudor Ratiu and Richard Cushman. Reading, Mass.: Benjamin/Cummings Publishing Co., 1978.

    MATH  Google Scholar 

  3. Arnold, V., Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 1966, vol. 16, pp. 319–361.

    Google Scholar 

  4. Arnold, V.I., Kozlov, V.V., and Neishtadt, A.I., Mathematical Aspects of Classical and Celestial Mechanics, Berlin: Springer, 2006.

    MATH  Google Scholar 

  5. Arnold, V.I. and Khesin, B.A., Topological Methods in Hydrodynamics, Applied Mathematical Sciences, vol. 125, New York: Springer, 1998.

    MATH  Google Scholar 

  6. Batchelor, G.K., An Introduction to Fluid Dynamics. Second paperback edition. Cambridge Mathematical Library, Cambridge: Cambridge University Press, 1999.

    MATH  Google Scholar 

  7. Borisov, A.V., Kozlov, V.V., and Mamaev, I.S., Asymptotic Stability and Associated Problems of Dynamics of Falling Rigid Body, Regul. Chaotic Dyn., 2007, vol. 12, pp. 531–565.

    Article  MathSciNet  Google Scholar 

  8. Borisov, A.V. and Mamaev, I.S., On theMotion of a Heavy Rigid Body in an Ideal Fluid with Circulation, Chaos, 2006, vol. 16, 013118, 7 pp.

    Article  MathSciNet  Google Scholar 

  9. Borisov, A.V., Mamaev, I.S., and Ramodanov, S.M., Dynamic Interaction of Point Vortices and a Two-dimensional Cylinder, J. Math. Phys., 2007, vol. 48, 065403, 9 pp.

    Article  MathSciNet  Google Scholar 

  10. Cendra, H., Marsden, J., and Ratiu, T.S., Cocycles, Compatibility, and Poisson Brackets for Complex Fluids. In Advances in Multifield Theories for Continua with Substructure, Model. Simul. Sci. Eng. Technol., Boston, MA: Birkhäuser Boston, 2004, pp. 51–73.

    Google Scholar 

  11. Chaplygin, S.A., On the Effect of a Plane-parallel Air Flow on a Cylindrical Wing Moving in It, The Selected Works on Wing Theory of Sergei A. Chaplygin., 1956, pp. 42–72. Translated from the 1933 Russian original by M.A. Garbell.

  12. Ebin, D.G. and Marsden, J.E., Groups of Diffeomorphisms and the Notion of an Incompressible Fluid, Ann. Math. (2), 1970, vol. 92, pp. 102–163.

    Article  MathSciNet  Google Scholar 

  13. Gay-Balmaz, F. and Ratiu, T.S., Affine Lie-Poisson Reduction, Yang-Mills Magnetohydrodynamics, and Superfluids, Journal of Physics A: Mathematical and Theoretical, 2008, vol. 41, 344007, 24pp.

    Article  MathSciNet  Google Scholar 

  14. Gay-Balmaz, F. and Ratiu, T.S., The Geometric Structure of Complex Fluids, Adv. in Appl. Math., 2009, vol. 42, pp. 176–275.

    Article  MATH  MathSciNet  Google Scholar 

  15. Guillemin, V. and Sternberg, S., Symplectic Techniques in Physics, Cambridge: Cambridge University Press, 1984.

    MATH  Google Scholar 

  16. Holm, D.D. and Kupershmidt, B.A., The Analogy Between Spin Glasses and Yang-Mills Fluids, Journal of Mathematical Physics, 1988, vol. 29, pp. 21–30.

    Article  MATH  MathSciNet  Google Scholar 

  17. Kanso, E., Marsden, J.E., Rowley, C.W., and Melli-Huber, J.B., Locomotion of Articulated Bodies in a Perfect Fluid, J. Nonlinear Sci., 2005, vol. 15, pp. 255–289.

    Article  MATH  MathSciNet  Google Scholar 

  18. Kanso, E. and Oskouei, B., Stability of a Coupled Body-Vortex System, J. Fluid Mech., 2008, vol. 600, pp. 77–94.

    Article  MATH  MathSciNet  Google Scholar 

  19. Kanso, E., Swimming Due to Transverse Shape Deformations, J. Fluid Mech., 2009, vol. 631, pp. 127–148.

    Article  MATH  MathSciNet  Google Scholar 

  20. Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry. Vol. 1, New York: Interscience Publishers, John Wiley & Sons. 1963.

    Google Scholar 

  21. Koiller, J. Note on Coupled Motions of Vortices and Rigid Bodies, Phys. Lett. A, 1987, vol. 120, pp. 391–395.

    Article  MathSciNet  Google Scholar 

  22. Kozlov, V.V., On a Heavy Cylindrical Body Falling in a Fluid, Izv. RAN, Mekh. tv. tela, 1993, no. 4, pp. 113–117.

  23. Kozlov, V.V., General Theory of Vortices. Dynamical systems. X, Encyclopaedia of Mathematical Sciences, vol. 67, Berlin: Springer, 2003. Translated from the 1998 Russian edition.

    Google Scholar 

  24. Lamb, H., Hydrodynamics, Dover Publications, 1945. Reprint of the 1932 Cambridge University Press edition.

  25. Leonard, N.E., Stability of a Bottom-heavy Underwater Vehicle, Automatica J. IFAC, 1997, vol. 33, pp. 331–346.

    Article  MATH  MathSciNet  Google Scholar 

  26. Lewis, D., Marsden, J., Montgomery, R. and Ratiu, T., The Hamiltonian structure for dynamic free boundary problems, Phys. D, 1986, vol. 18, pp. 391–404.

    Article  MATH  MathSciNet  Google Scholar 

  27. Marsden, J. and Weinstein, A., Coadjoint Orbits, Vortices, and Clebsch Variables for Incompressible Fluids, Phys. D, 1983, vol. 7, pp. 305–323.

    Article  MathSciNet  Google Scholar 

  28. Marsden, J.E., Misiołlek, G., Ortega, J.-P., Perlmutter, M., and Ratiu, T.S., Hamiltonian Reduction by Stages, Lecture Notes in Mathematics, vol. 1913, Berlin: Springer, 2007.

    MATH  Google Scholar 

  29. Marsden, J.E. and Perlmutter, M., The Orbit Bundle Picture of Cotangent Bundle Reduction, C. R. Math. Acad. Sci. Soc. R. Can., 2000, vol. 22, pp. 35–54.

    MathSciNet  Google Scholar 

  30. Marsden, J.E. and Ratiu, T.S., Introduction to Mechanics and Symmetry, Texts in Applied Mathematics, vol. 17, New York: Springer, 1994.

    MATH  Google Scholar 

  31. Milne-Thomson, L. Theoretical Hydrodynamics. Fifth edition, revised and enlarged. London: MacMillan and Co. Ltd., 1968.

    MATH  Google Scholar 

  32. Montgomery, R., The Bundle Picture in Mechanics, PhD thesis, UC Berkeley, 1986; http://count.ucsc.edu/?rmont/papers/list.html.

  33. Ovsienko, V.Y. and Khesin, B.A., The Super Korteweg-de Vries Equation as an Euler Equation, Funktsional. Anal. i Prilozhen., 1987, vol. 21, pp. 81–82.

    MATH  MathSciNet  Google Scholar 

  34. Shashikanth, B.N., Poisson Brackets for the Dynamically Interacting System of a 2D Rigid Cylinder and N Point Vortices: the Case of Arbitrary Smooth Cylinder Shapes, Regul. Chaotic Dyn., 2005, vol. 10, pp. 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  35. Sternberg, S., Minimal Coupling and the Symplectic Mechanics of a Classical Particle in the Presence of a Yang-Mills Field, Proc. Nat. Acad. Sci. U.S.A., 1977, vol. 74, pp. 5253–5254.

    Article  MATH  MathSciNet  Google Scholar 

  36. Streater, R. F., The Representations of the Oscillator Group, Comm. Math. Phys., 1967, vol. 4, pp. 217–236.

    Article  MATH  MathSciNet  Google Scholar 

  37. Vankerschaver, J., Kanso, E. and Marsden, J.E., The Geometry and Dynamics of Interacting Rigid Bodies and Point Vortices, J. Geom. Mech., 2009, vol. 1, pp. 223–266.

    Article  MATH  MathSciNet  Google Scholar 

  38. Vizman, C., Geodesics on Extensions of Lie Groups and Stability: the Superconductivity Equation, Phys. Lett. A, 2001, vol. 284, pp. 23–30.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vankerschaver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vankerschaver, J., Kanso, E. & Marsden, J.E. The dynamics of a rigid body in potential flow with circulation. Regul. Chaot. Dyn. 15, 606–629 (2010). https://doi.org/10.1134/S1560354710040143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354710040143

MSC2000 numbers

Key words

Navigation