Skip to main content
Log in

Hydrothermal synthesis of nanotubes based on (Mg,Fe,Co,Ni)3Si2O5(OH)4 hydrosilicates

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Hydrosilicate nanotubes of the variable composition (Mg,Fe,Co,Ni)3Si2O5(OH)4 with a chrysotile structure have been synthesized under hydrothermal conditions at temperatures of 250–450°C and pressures of 30–100 MPa in media of different compositions. The conditions and ranges of formation of nanotubular hydrosilicates of the compositions under investigation have been determined. It has been demonstrated that the type of cation of the octahedral layer in the chrysotile structure has a decisive effect on the physicochemical conditions, mechanism, and rate of formation of nanotubes, as well as on their structure, morphology, and sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S., Helical Microtubules of Graphitic Carbon, Nature (London), 1991, vol. 354, pp. 56–58.

    Article  CAS  ADS  Google Scholar 

  2. Tenne, R., Fullerene-Like Structures and Nanotubes from Inorganic Compounds, Endeavour, 1996, vol. 20, no. 3, pp. 97–104.

    Article  CAS  Google Scholar 

  3. Rakov, A.L., Nanotubes of Inorganic Substances, Zh. Neorg. Khim., 1999, vol. 44, no. 11, pp. 1827–1840 [Russ. J. Inorg. Chem. (Engl. transl.), 1999, vol. 44, no. 11, pp. 1736–1749].

    CAS  Google Scholar 

  4. Pokropivnyi, V.V., Non-Carbon Nanotubes (Review): Part 3. Properties and Applications, Poroshk. Metall. (Kiev), 2002, nos. 3–4, pp. 13–27 [Powder Metall. Met. Ceram. (Engl. transl.), 2002, vol. 41, nos. 3–4, pp. 123–135].

  5. Ivanovskii, A.L., Non-Carbon Nanotubes: Synthesis and Simulation, Usp. Khim., 2002, vol. 71, no. 3, pp. 203–224.

    Google Scholar 

  6. Rao, C.N.R. and Nath, M., Inorganic Nanotubes, Dalton Trans., 2003, no. 1, pp. 1–24.

  7. Ivanovskaya, V.V., Enyashin, A.N., Makyrin, Yu.N., and Ivanovskii, A.L., Computer Simulation of New Nanotubes and Prediction of Their Functional Properties, Nanotekhnika, 2006, no. 1, pp. 126–140.

  8. Zakharova, G.S., Volkov, V.L., Ivanovskaya, V.V., and Ivanovskii, A.L., Nanotubes and Related Nanostructures of d-Metal Oxides: Synthesis and Computer Design, Usp. Khim., 2005, vol. 74, no. 7, pp. 651–685.

    Google Scholar 

  9. Krivovichev, S.V., Nanotubes in Minerals and Mineral-Related Systems, in Minerals as Advanced Materials I, Krivovichev, S.V., Ed., Heidelberg: Springer, 2008, pp. 213–228.

    Chapter  Google Scholar 

  10. Kakos, G.A., Turney, T.W., and Williams, T.B., Synthesis and Structure of Tochilinite: A Layered Metal Hydroxide/Sulfide Composite, J. Solid State Chem., 1994, vol. 108, pp. 102–111.

    Article  CAS  ADS  Google Scholar 

  11. Pauling, L., The Structure of the Chlorites, Proc. Natl. Acad. Sci. USA, 1930, vol. 16, pp. 578–582.

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Whittakker, E.J.W., The Structure of Chrysotile, Acta Crystallogr., 1953, vol. 6, pp. 747–749.

    Article  Google Scholar 

  13. Wicks, F.J. and Whittakker, E.J.W., A Reappraisal of the Structures of the Serpentine Minerals, Can. Mineral., 1975, vol. 13, pp. 227–243.

    Google Scholar 

  14. Mitra, G.B. and Bhattacherjee, S., The Structure of Halloysite, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1975, vol. 31, pp. 2851–2857.

    Article  Google Scholar 

  15. Bursill, L.A., Peng, J.L., and Bourgeois, L.N., Imogolite: An Aluminosilicate Nanotube Material, Philos. Mag. A, 2000, vol. 80, no. 1, pp. 105–117.

    Article  CAS  ADS  Google Scholar 

  16. Farmer, V.C., Fraser, A.R., and Tait, J.M., Synthesis of Imogolite: A Tubular Aluminium Silicate Polymer, J. Chem. Soc., Chem. Commun., 1977, no. 13, pp. 462–463.

  17. Wada, S., Imogolite Synthesis at 25°C, Clay. Clay. Miner., 1987, vol. 35, pp. 379–384.

    Article  CAS  Google Scholar 

  18. Syromyatnikov, F.V., Synthesis of Serpentine, in Trudy I soveshchaniya po eksperimental’noi mineralogii i petrografii (Proceedings of the I Workshop on Experimental Mineralogy and Petrography), Leningrad: USSR Academy of Sciences, 1937, p. 103.

    Google Scholar 

  19. Bowen, N.L. and Tuttle, O.F., The System MgO-SiO2-H2O, Geol. Soc. Am. Bull., 1949, vol. 60, pp. 439–442.

    Article  CAS  Google Scholar 

  20. Roy, D.M. and Roy, R., An Experimental Study of the Formation and Properties of Synthetic Serpentines and Related Layer Silicate Minerals, Am. Mineral., 1954, vol. 39, nos. 11–12, pp. 957–975.

    CAS  Google Scholar 

  21. Noll, W., Kircher, H., and Syberrtz, W., Über synthetischen Kobaltchrysotil und seine Beziehungen zu anderen Solenosilikaten, Beitr. Mineral. Petrogr., 1960, vol. 7, p. 232.

    Article  Google Scholar 

  22. Jang, J.C., The Growth of Synthetic Chrysotile Fiber, Am. Mineral., 1961, vol. 46, nos. 5–6, pp. 748–752.

    Google Scholar 

  23. Vezentsev, A.I., Smolikov, A.A., Pylev, L.N., and Vasil’eva, L.A., Preparation of Chrysotile Asbestos and Its Isomorphic Analogs and Evaluation of Their Carcinogenic Activity, Zh. Ekol. Khim., 1993, no. 2, pp. 127–131.

  24. Pylev, L.N., Vasil’eva, L.A., and Vezentsev, A.I., On the Possibility of Reducing the Bioactivity of Chrysotile Asbestos, Eksp. Onkol., 1996, no. 9, pp. 225–228.

  25. Jancar, B. and Suvorov, D., The Influence of Hydrothermal-Reaction Parameters on the Formation of Chrysotile Nanotubes, Nanotechnology, 2006, vol. 17, pp. 25–29.

    Article  CAS  ADS  Google Scholar 

  26. Falini, G., Foresti, E., Gazzano, M., Gualtieri, A.F., Leoni, M., Lesci, I.G., and Roveri, N., Tubular-Shaped Stoichiometric Chrysotile Nanocrystals, Chem.-Eur. J., 2004, vol. 10, no. 12, pp. 3043–3049.

    Article  CAS  Google Scholar 

  27. Foresti, E., Hochella, M.F., Jr., Kornishi, H., Lesci, I.G., Madden, A.S., Roveri, N., and Xu, H., Morphological and Chemical/Physical Characterization of Fe-Doped Synthetic Chrysotile Nanotubes, Adv. Funct. Mater., 2005, vol. 15, no. 6, pp. 1009–1016.

    Article  CAS  Google Scholar 

  28. Yudin, V.E., Otaigbe, J.U., Gladchenko, S., Olson, B.G., Nazarenko, S., Korytkova, E.N., and Gusarov, V.V., New Polyimide Nanocomposites Based on Silicate Type Nanotubes: Dispersion, Processing, and Properties, Polymer, 2007, vol. 48, no. 5, pp. 1306–1315.

    Article  CAS  Google Scholar 

  29. Gofman, I.V., Svetlichnyi, V.M., Yudin, V.E., Dobrodumov, A.V., Didenko, A.L., Abalov, I.V., Korytkova, E.N., Egorov, A.I., and Gusarov, V.V., Modification of Films of Heat-Resistant Polyimides by Adding Hydrosilicate and Carbon Nanoparticles of Various Geometries, Zh. Obshch. Khim., 2007, vol. 77, no. 7, pp. 1075–1080 [Russ. J. Gen. Chem. (Engl. transl.), 2007, vol. 77, no. 7, pp. 1158–1163].

    Google Scholar 

  30. Kononova, S.V., Korytkova, E.N., Romashkova, K.A., Kuznetsov, Yu.P., Gofman, I.V., Svetlichnyi, V.M., and Gusarov, V.V., Nanocomposite Based on Polyamidoimide with Hydrosilicate Nanoparticles of Varied Morphology, Zh. Prikl. Khim. (St. Petersburg), 2007, vol. 80, no. 12, pp. 2064–2070 [Russ. J. Appl. Chem. (Engl. transl.), vol. 80, no. 12, pp. 2142–2148].

    Google Scholar 

  31. Olson, B.G., Decker, J.J., Nazarenko, S., Yudin, V.E., Otaigbe, J., Korytkova, E.N., and Gusarov, V.V., Aggregation of Synthetic Chrysotile Nanotubes in the Bulk and in Solution Probed by Nitrogen Adsorption and Viscosity Measurements, J. Phys. Chem. C, 2008, vol. 112, no. 33, pp. 12943–12950.

    Article  CAS  Google Scholar 

  32. Maslennikova, T.P., Korytkova, E.N., and Gusarov, V.V., Interaction of Mg3Si2O5(OH)4 Nanotubes with Potassium Hydroxide, Zh. Prikl. Khim. (St. Petersburg), 2008, vol. 81, no. 3, pp. 389–392 [Russ. J. Appl. Chem. (Engl. transl.), 2008, vol. 81, no. 3, pp. 375–379].

    Google Scholar 

  33. Korytkova, E.N., Maslov, A.V., Pivovarova, L.N., Drozdova, I.A., and Gusarov, V.V., Formation of Mg3Si2O5(OH)4 Nanotubes under Hydrothermal Conditions, Fiz. Khim. Stekla, 2004, vol. 30, no. 1, pp. 72–78 [Glass Phys. Chem. (Engl. transl.), 2004, vol. 30, no. 1, pp. 51–55].

    Google Scholar 

  34. Korytkova, E.N., Maslov, A.V., Pivovarova, L.N., Polegotchenkova, Yu.V., Povinich, V.F., and Gusarov, V.V., Synthesis of Nanotubular Mg3Si2O5(OH)4-Ni3Si2O5(OH)4 Silicates at Elevated Temperatures and Pressures, Neorg. Mater., 2005, vol. 41, no. 7, pp. 849–855 [Inorg. Mater. (Engl. transl.), 2005, vol. 41, no. 7, pp. 743–749].

    Article  Google Scholar 

  35. Korytkova, E.N., Pivovarova, L.N., Semenova, O.E., Drozdova, I.A., Povinich, V.F., and Gusarov, V.V., Hydrothermal Synthesis of Nanotubular Mg-Fe Hydrosilicate, Zh. Neorg. Khim., 2007, vol. 52, no. 3, pp. 388–394 [Russ. J. Inorg. Chem. (Engl. transl.), 2007, vol. 52, no. 3, pp. 338–344].

    CAS  Google Scholar 

  36. Korytkova, E.N., Pivovarova, L.N., Drozdova, I.A., and Gusarov, V.V., Hydrothermal Synthesis of Nanotubular Co-Mg Hydrosilicates with the Chrysotile Structure, Zh. Obshch. Khim., 2007, vol. 77, no. 10, pp. 1600–1607 [Russ. J. Gen. Chem. (Engl. transl.), 2007, vol. 77, no. 10, pp. 1669–1676].

    Google Scholar 

  37. Chivilikhin, S.A., Popov, I.Yu., and Gusarov, V.V., Dynamics of Nanotube Twisting in a Viscous Fluid, Dokl. Akad. Nauk, 2007, vol. 412, no. 2, pp. 201–203 [Dokl. Phys. (Engl. transl.), 2007, vol. 52, no. 1, pp. 60–62].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text ¢ E.N. Korytkova, L.N. Pivovarova, 2010, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korytkova, E.N., Pivovarova, L.N. Hydrothermal synthesis of nanotubes based on (Mg,Fe,Co,Ni)3Si2O5(OH)4 hydrosilicates. Glass Phys Chem 36, 53–60 (2010). https://doi.org/10.1134/S1087659610010104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659610010104

Key words

Navigation