Skip to main content
Log in

Modeling the Magnetic Anomaly of the Bosumtwi (Ghana) Complex Meteorite Crater by Taking Into Account the Impact Demagnetization and Morphological Features

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—The formation of impact craters on the Earth’s surface is accompanied by the effect of shock waves on rocks. The shock wave compression results in rocks heating up to the point of melting and evaporation during unloading. The direct mechanical action of shock compression and residual heating change the magnetic properties of rocks. Geophysical modeling is used to determine the sources of the magnetic anomaly by interpreting the fields measured on the surface, but such modeling does not take into account the impact demagnetization of rocks. This work gives an example of analysis of the magnetic anomaly over the well-studied Bosumtwi crater (Ghana, 10.5 km diameter, 1 million years old), including the numerical modeling of the crater formation process and the construction of a magnetic anomaly model based on the simulated shock compression parameters and crater drilling data. It is shown that the morphological features of the crater— the crater rim and the central uplift—form positive magnetic anomalies around and inside the crater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Artemieva, N., Karp, T., and Milkereit, B., Investigating the Lake Bosumtwi impact structure: Insight from numerical modeling, Geochem. Geophys. Geosyst., 2004, vol. 5, no. 11, pp. 1–20.

    Article  Google Scholar 

  2. Collins, G.S., Melosh, H.J., and Ivanov, B.A., Modeling damage and deformation in impact simulations, Meteorit. Planet. Sci., 2004, vol. 39, no. 2, pp. 217–231.

    Article  Google Scholar 

  3. Elbra, T., Kontny, A., Pesonen, L.J., Schleifer, N., and Schell, C., Petrophysical and paleomagnetic data of drill cores from the Bosumtwi impact structure, Ghana, Meteorit. Planet. Sci., 2007, vol. 42, nos. 4–5, pp. 829–838.

    Article  Google Scholar 

  4. Ferriere, L., Koeberl, C., Ivanov, B.A., and Reimold, W.U., Shock metamorphism of Bosumtwi impact crater rocks, shock attenuation, and uplift formation, Science, 2008, vol. 322, no. 5908, pp. 1678–1681.

    Article  Google Scholar 

  5. Ivanov, B.A., Numerical modeling of the largest terrestrial meteorite craters, Sol. Syst. Res., 2005, vol. 39, pp. 381–409.

    Article  Google Scholar 

  6. Ivanov, B.A., Melosh, H.J., and Pierazzo, E., Basin-forming impacts: Reconnaissance modeling, in Large Meteorite Impacts and Planetary Evolution IV, Gibson, R.L. and Reimold, W.U., Eds., Geological Society of America Spec. Pap. vol. 465, Boulder: GSA, 2010, pp. 29–49.

  7. Khramov, A.N., Goncharov, G.I., Komissarova, R.A., et al., Paleomagnitologiya (Paleomagnetology), Khramov, A.N., Ed., Leningrad: Nedra, 1982.

    Google Scholar 

  8. Koeberl, C., Milkereit, B., Overpeck, J.T., Scholz, C.A., Amoako, P.Y.O., Boamah, D., Danuor, S., Karp, T., Kueck, J., Hecky, R.E., King, J.W., and Peck, J.A., An international and multidisciplinary drilling project into a young complex impact structure: The 2004 ICDP Bosumtwi Crater Drilling Project—An overview, Meteorit. Planet. Sci., 2007, vol. 42, pp. 483–511.

    Article  Google Scholar 

  9. Kontny, A., Elbra, T., Just, J., Pesonen, L.J., Schleicher, A.M., and Zolk, J., Petrography and shock-related remagnetization of pyrrhotite in drill cores from the Bosumtwi Impact Crater Drilling Project, Ghana, Meteorit. Planet. Sci., 2007, vol. 42, nos. 4–5, pp. 811–827.

    Article  Google Scholar 

  10. Kuzmicheva, M.Yu. and Ivanov, B.A., Simulation of the magnetic anomaly associated with a complex crater using the example of the Bosumtwi crater, Sol. Syst. Res., 2020, vol. 54, no. 5, pp. 372–383.

    Article  Google Scholar 

  11. Landau, L.D. and Lifshits, E.M., Teoriya polya, tom 2, Teoreticheskaya fizika v 10-ti tomakh (Field Theory, vol. 2 of Theoretical Physics in 10 vols.), 9th ed., Moscow: Fizmatlit, 2018.

  12. Melosh, H.J., Acoustic fluidization – A new geologic process, J. Geophys. Res., 1979, vol. 84, no. B13, pp. 7513–7520.

    Article  Google Scholar 

  13. Melosh, H.G., Impact Cratering: A Geologic Process, Oxford: Oxford Univ. Press, 1989.

    Google Scholar 

  14. Melosh, H.J. and Ivanov, B.A., Impact Crater Collapse, Annu. Rev. Earth Planet. Sci., 1999, vol. 27, pp. 385–415.

    Article  Google Scholar 

  15. Mohit, P.S. and Arkani-Hamed, J., Impact demagnetization of the martian crust, Icarus, 2004, vol. 168, no. 2, pp. 305–317.

    Article  Google Scholar 

  16. Oliveira, J.S., Wieczorek, M.A., and Kletetschka, G., Iron Abundances in Lunar Impact Basin Melt Sheets From Orbital Magnetic Field Data, J. Geophys. Res.: Planets, 2017, vol. 122, pp. 2449–2444.

    Google Scholar 

  17. Pierazzo, E., Vickery, A.M., and Melosh, H.J., A reevaluation of impact melt production, Icarus, 1997, vol. 127, pp. 408–423.

    Article  Google Scholar 

  18. Pilkington, M. and Hildebrand, A.R., Transient and disruption cavity dimensions of complex terrestrial impact structures derived from magnetic data, Geophys. Res. Lett., 2003, vol. 30, no. 21, Paper ID 2087.

  19. Plado, J., Pesonen, L., and Puura, V., Effect of erosion on gravity and magnetic signatures of complex impact structures: Geophysical modeling and applications, in Large Meteorite Impacts and Planetary Evolution II, Dressler, B.O. and Sharpton, V.L., Eds., Geological Society of America Special Paper vol. 339, Boulder: GSA, 1999, pp. 229–239.

    Google Scholar 

  20. Plado, J., Pesonen, L.J., Koeberl, C., and Elo, S., The Bosumtwi meteorite impact structure, Ghana: A magnetic model, Meteorit. Planet. Sci., 2000, vol. 35, no. 4, pp. 723–732.

    Article  Google Scholar 

  21. Schmieder, M. and Kring, D., Earth’s impact events through geologic time: a list of recommended ages for terrestrial impact structures and deposits, Astrobiology, 2020, vol. 20, no. 1, pp. 91–141.

    Article  Google Scholar 

  22. Spohn, T., Physics of terrestrial planets and moons: an introduction and overview, in Treatise on Geophysics, vol. 10: Physics of Terrestrial Planets and Moons, 2nd ed, Schubert, G., Ed., Amsterdam: Elsevier, 2015, pp. 1–22.

  23. Strakhov V.N., Determination of some basic parameters of magnetized bodies from magnetic observation data, Izv. Akad. Nauk SSSR, Ser. Geofiz., 1956, no. 2, pp. 144–156.

  24. Tillotson, J.H., Metallic Equations of State for Hypervelocity Impact, General Atomic Report GA-3216, 1962.

  25. Ugalde, H.A., Artemieva, N., and Milkereit, B., Magnetization on impact structures—constrains from numerical modeling and petrophysics, in Large Meteorite Impacts III, Geological Society of America Special Paper vol. 384, Kenkmann, T., Hörz, F., and Deutsch, A., Eds., Boulder: GSA 2005, pp. 25–42.

    Google Scholar 

  26. Ugalde, H., Morris, W.A., Pesonen, L.J., and Danuor, S.K., The Lake Bosumtwi meteorite impact structure, Ghana—Where is the magnetic source?, Meteorit. Planet. Sci., 2007, vol. 42, nos. 4–5, pp. 867–882.

    Article  Google Scholar 

  27. Wieczorek, M.A., Strength, depth, and geometry of magnetic sources in the crust of the Moon from localized power spectrum analysis, J. Geophys. Res.: Planets, 2018, vol. 123, pp. 291–316.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are deeply grateful to the reviewers for their careful examination of the manuscript and their valuable suggestions for its improvement. The authors have tried to take into consideration the comments as much as possible.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Yu. Kuzmicheva or B. A. Ivanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmicheva, M.Y., Ivanov, B.A. Modeling the Magnetic Anomaly of the Bosumtwi (Ghana) Complex Meteorite Crater by Taking Into Account the Impact Demagnetization and Morphological Features. Izv., Phys. Solid Earth 57, 795–804 (2021). https://doi.org/10.1134/S1069351321050128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351321050128

Keywords:

Navigation